Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-04-22
Designs and Analyses of Some RF/Microwave Passive Elements on Cylindrical Cpws
By
Progress In Electromagnetics Research Letters, Vol. 8, 43-51, 2009
Abstract
In this article, designs and analyses of several CCPW (Cylindrical CPW) discontinuities have been realized as microwave reactive elements. The quasi-TEM characteristic parameters of CCPWs have been obtained by CMT (Conformal Mapping Techniques) which provide satisfactory accuracy at microwave frequencies and lead to closed-form analytical solutions suitable for CAD software packages. Then these discontinuities have been simulated in CST Microwave Studio 2006 in order to obtain inductance, capacitance and also input impedance versus frequency and physical dimensions of the elements. The results show that CCPW discontinuities can be used successfully as reactive elements for related applications.
Citation
Volkan Akan, Mehmet Duyar, Erdem Yazgan, and Mehmet Bayrak, "Designs and Analyses of Some RF/Microwave Passive Elements on Cylindrical Cpws," Progress In Electromagnetics Research Letters, Vol. 8, 43-51, 2009.
doi:10.2528/PIERL09031303
References

1. Dib, N. and A. Omar, "Dispersion analysis of multilayer cylindrical tranmission lines containing magnetized ferrite substrates," IEEE Trans. Microwave Tech., Vol. 50, No. 7, 1730-1736, July 2002.
doi:10.1109/TMTT.2002.800423

2. Duyar, M., V. Akan, E. Yazgan, and M. Bayrak, "Analyses of elliptical coplanar coupled waveguides and coplanar coupled waveguides with finite ground width," IEEE Trans. Microwave Tech., Vol. 54, No. 4, 1388-1395, June 2006.
doi:10.1109/TMTT.2006.871354

3. Akan, V. and E. Yazgan, "Quasistatic TEM characteristics of multilayer elliptical and cylindrical coplanar waveguides," Microwave Opt. Tech. Lett., Vol. 42, No. 4, 317-322, Aug. 2004.
doi:10.1002/mop.20290

4. Yazgan, E. and V. Akan, "Conformal mapping techniques," Encyclopedia of RF and Microwave Engineering, Vol. 1, John Wiley & Sons, 2005.

5. Karpuz, C., M. Duyar, and A. Gorur, "Analysis of cylindrical conductor-backed coplanar waveguides," Microwave Opt. Tech. Lett., Vol. 27, No. 2, 144-146, Oct. 2000.
doi:10.1002/1098-2760(20001020)27:2<144::AID-MOP19>3.0.CO;2-G

6. Al-Zoubi, A. and N. Dib, "CAD model of gap in cylindrical coplanar waveguide," Electronics Letters, Vol. 35, No. 25, 1857-1858, Oct. 1999.

7. Beilenhoff, K., H. Klingbeil, W. Heinrich, and H. L. Hartnagel, "Open and short circuits in coplanar MMIC's," IEEE Trans. Microwave Tech., Vol. 41, No. 9, 1534-1537, Sep. 1993.
doi:10.1109/22.245673

8. Simons, R. N. and G. E. Ponchak, "Modeling of some coplanar waveguide discontinuities," IEEE Trans. Microwave Tech., Vol. 36, No. 12, Dec. 1998.

9. Su, H.-C. and K.-L. Wong, "Quasistatic solutions of cylindrical coplanar waveguides," Microwave and Optical Technology Lett., Vol. 14, No. 16, 347-351, 1997.
doi:10.1002/(SICI)1098-2760(19970420)14:6<347::AID-MOP12>3.0.CO;2-0