Vol. 8
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-11
A Thresholded Landweber Iteration Based on Sensing Dictionary
By
Progress In Electromagnetics Research Letters, Vol. 8, 73-82, 2009
Abstract
Thresholded Landweber Iteration (TLI) is an attractive algorithm since it has the advantage of simplicity for the problem of sparse reconstruction. However, this algorithm depends heavily on the coherence property of the redundant ictionary, and its convergence rate is slow. In this paper, we develop a modified version of TLI by using a sensing dictionary. The proposed algorithm significantly improves the reconstruction performance and the convergence roperties when compared to the classical TLI. We provide a sufficient condition for which the modified TLI algorithm an be guaranteed to exactly identify the correct atoms and also discuss the convergence properties for this agorithm. Finally, simulation results are presented to demonstrate the superior performance of the proposed lgorithm.
Citation
Anmin Huang, Qun Wan, Guan Gui, and Wanlin Yang, "A Thresholded Landweber Iteration Based on Sensing Dictionary," Progress In Electromagnetics Research Letters, Vol. 8, 73-82, 2009.
doi:10.2528/PIERL09030903
References

1. Blumensath, T. and M. E. Davies, "Iterative thresholding for sparse approximations," The Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 629-654, Dec. 2008.
doi:10.1007/s00041-008-9035-z

2. Zhang, Y., Q. Wan, and A. Huang, "Localization of narrow band sources in the presence of mutual coupling sparse solution finding," Progress In Electromagnetics Resaerch, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703

3. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, Vol. 1, 40-44, Pacific Grove, CA, Nov. 1993.

4. Daubechies, I., M. Defrise, and C. De Mol, "An iterative thresholding algorothm for linear inverse problems," Comm. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, Aug. 2004.
doi:10.1002/cpa.20042

5. Hunter, D. and K. Lange, "A tutorial on MM algorithms," Amer. Statist., Vol. 58, 30-37, 2004.
doi:10.1198/0003130042836

6. Bioucas-Dias, J., "Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors," IEEE Trans. Image Process., Vol. 15, No. 4, 937-951, Apr. 2006.
doi:10.1109/TIP.2005.863972

7. Adeyemi, T. and M. E. Davies, "Sparse representations of images using overcomplete complex wavelets," IEEE SP 13th Workshop on Statistical Signal Processing, 805-809, Jul. 2006.

8. Herrity, K. K., A. C. Gilbert, and J. A. Tropp, "Sparse approximation via iterative thresholding," IEEE International Conference on ICASSP, Vol. 3, 14-19, May 2006.

9. Schnass, K. and P. Vandergheynst, "Dictionary preconditioning for greedy algorithms," IEEE Trans. Signal Process., Vol. 56, No. 5, 1994-2002, May 2008.
doi:10.1109/TSP.2007.911494