Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-13
Propagation in a Helical Waveguide with Inhomogeneous Dielectric Profiles in Rectangular Cross Section
By
Progress In Electromagnetics Research B, Vol. 16, 155-188, 2009
Abstract
This paper presents a rigorous approach for the propagation of electromagnetic (EM) fields along a helical waveguide with arbitrary profiles in the rectangular cross section. The main objective is to develop a mode model to provide a numerical tool for the calculation of the output fields, output power density, and output power transmission for an arbitrary step's angle and the radius of the cylinder of the helical waveguide. Another objective is to demonstrate the ability of the model to solve practical problems with inhomogeneous dielectric profiles. The method is based on Fourier coefficients of the transverse dielectric profile and those of the input wave profile. Laplace transform is necessary to obtain the comfortable and simple input-output connections of the fields. This model is useful for the analysis of dielectric waveguides in the microwave and the millimeter-wave regimes, for diffused optical waveguides in integrated optics. The output power transmission and the output power density are improved by increasing the step's angle or the radius of the cylinder of the helical waveguide, especially in the cases of space curved waveguides.
Citation
Zion Menachem, and M. Haridim, "Propagation in a Helical Waveguide with Inhomogeneous Dielectric Profiles in Rectangular Cross Section," Progress In Electromagnetics Research B, Vol. 16, 155-188, 2009.
doi:10.2528/PIERB09022202
References

1. Riess, K., "Electromagnetic waves in a bent pipe of rectangular cross section," Q. Appl. Math., Vol. 1, 328-333, 1944.

2. Rice, S. O., "Reflections from circular bends in a rectangular wave guides --- Matrix theory," Bell Syst. Tech. J., Vol. 27, 305-349, 1948.

3. Heiblum, M. and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron., Vol. 11, 75-83, 1975. Correction, Ibid., Vol. 12, 313, 1976.
doi:10.1109/JQE.1975.1068563

4. Kawakami, S., M. Miyagi, and S. Nishida, "Bending losses of dielectric slab optical waveguide with double or multiple claddings," Appl. Optics, Vol. 14, 588-2597, 1975. Correction, Ibid., Vol. 15, 1681, 1976..

5. Chang, D. C. and F. S. Barnes, "Reduction of radiation loss in a curved dielectric slab waveguide," Sci. Rept. 2 AFOSR-72-2417, 1973.

6. Marcatily, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, 1964.

7. Cochran, J. A. and R. G. Pecina, "Mode propagation in continuously curved waveguides," Radio Science, Vol. 1, No. 6, 679-696, 1966.

8. Carle, P. L., "New accurate and simple equivalent circuit for circular E-plane bends in rectangular waveguide ," Electronics Letters, Vol. 23, No. 10, 531-532, 1987.
doi:10.1049/el:19870383

9. Weisshaar, A., S. M. Goodnick, and V. K. Tripathi, "A rigorous and efficient method of moments solution for curved waveguide bends," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 12, 2200-2206, 1992.
doi:10.1109/22.179881

10. Cornet, P., R. Dusseaux, and J. Chandezon, "Wave propagation in curved waveguides of rectangular cross section," IEEE Trans. Microwave Theory Tech., Vol. 47, 965-972, 1999.
doi:10.1109/22.775427

11. Ghosh, S., P. K. Jain, and B. N. Basu, "Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide," Progress In Electromagnetics Research, Vol. 18, 19-43, 1998.
doi:10.2528/PIER97032900

12. Kumar, D. and O. N. Singh II, "Elliptical and circular step-index with conducting helical windings on the core-cladding boundaries for the different winding pitch angles --- A comparative modal dispersion analysis," Progress In Electromagnetics Research, Vol. 52, 1-21, 2005.
doi:10.2528/PIER04052002

13. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures, 95-113, Chap. 8, Peter Peregrinus Ltd., 1977.

14. Trang, N. T. and R. Mittra, "Field profile in a single-mode curved dielectric waveguide of rectangular cross section," IEEE Trans. Microwave Theory Tech., Vol. 29, 1315-1318, 1981.
doi:10.1109/TMTT.1981.1130558

15. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles," Progress In Electromagnetics Research, Vol. 42, 173-192, 2003.
doi:10.2528/PIER03012303

16. Menachem, Z. and E. Jerby, "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. 46, 975-982, 1998.
doi:10.1109/22.701451

17. Menachem, Z., N. Croitoru, and J. Aboudi, "Improved mode model for IR wave propagation in a toroidal dielectric waveguide and applications," Opt. Eng., Vol. 41, 2002.

18. Menachem, Z. and M. Mond, "Infrared wave propagation in a helical waveguide with inhomogeneous cross section and applications," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205

19. Salzer, H. E., "Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms," Math. Tables and Other Aids to Comut., Vol. 9, 164-177, 1955.
doi:10.2307/2002053

20. Salzer, H. E., "Additional formulas and tables for orthogonal polynomials originating from inversion integrals," J. Math. Phys., Vol. 39, 72-86, 1961.

21. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Oxford, UK.

22. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.

23. Vladimirov, V., Equations of Mathematical Physics, 1971.