1. "Wireless MAC and PHY specifications: High speed physical layer in the 5GHz band,", IEEE 802.11a/D7.0, 1999.
doi:10.1109/74.683539
2. "Wireless MAC and PHY specifications: Further higher-speed physical layer extension in the 2.4 GHz band,", IEEE 802.11g, 2003.
3. Catedra, M. F., J. Perez, F. Saez de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for 3D analyses of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas Propag. Magazine, Vol. 40, No. 2, 15-28, Apr. 1998.
doi:10.1109/TAP.2008.916893
4. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, PIER 75, 357-381, 2007.
5. Fuschini, F., H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen, "Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 848-857, Mar. 2008.
6. Alvar, N. S., A. Ghorbani, and H. R. Amindavar, "A novel hybrid approach to ray tracing acceleration based on pre-processing and bounding volumes," Progress In Electromagnetics Research, PIER 82, 19-32, 2008.
doi:10.1163/156939307783134344
7. Wang, F. J. and J. S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4GHz WLAN," Progress In Electromagnetics Research, PIER 74, 39-46, 2007.
doi:10.1163/156939308784158724
8. Qin, W., "A novel patch antenna with a T-shaped parasitic strip for 2.4/5.8GHz WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2311-2320, 2007.
doi:10.2528/PIERB07111812
9. Liu, L., J. P. Xiong, Y. Z. Yin, and Y. L. Zhao, "A novel dual-F-shaped planar monopole antenna for ultrawideband communications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1106-1114, 2008.
doi:10.2528/PIERC08030501
10. El-Fishawy, N. A., M. Shokair, and W. Saad, "Proposed Mac protocol versus IEEE 802.15.3a for multimedia transmission over UWB networks ," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
doi:10.2528/PIERL08051102
11. Li, Z., C. X. Zhang, G. M. Wang, and W. R. Su, "Designs on CPW-FED aperture antenna for ultrawideband applications," Progress In Electromagnetics Research C, Vol. 2, 1-6, 2008.
doi:10.2528/PIERM08051203
12. Gao, G. P., X. X. Yang, and J. S. Zhang, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.
13. Sobli, N. M. and H. E. Abd-El-Raouf, "Design of a compact printed band-notched antenna for ultrawideband communications," Progress In Electromagnetics Research M, Vol. 3, 57-78, 2008.
doi:10.2528/PIERB08072603
14. Han, T. Y. and C. Y. D. Sim, "Reconfigurable monopolar circular patch antenna for wireless communication systems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 635-642, 2007.
doi:10.1163/156939308784160640
15. Ghassemi, N., J. Rashed-Mohassel, M. H. Neshati, S. Tavakoli, and M. Ghassemi, "A high gain dual stacked aperture coupled microstrip antenna for wideband applications," Progress In Electromagnetics Research B, Vol. 9, 127-135, 2008.
doi:10.2528/PIERL08012801
16. Mahmoudian, A. and K. Forooraghi, "A novel planar leaky wave antenna for wireless application," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2/3, 313-324, 2008.
doi:10.1163/156939308784159462
17. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact Mslot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERB08071406
18. Wang, H., C. Z. Gu, M. K. Mu, W. Z. Cui, W. Ma, J. Huangfu, and L. X. Ran, "Design of leakywave coaxial cable compatible for both 2G and 3G wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 731-740, 2008.
doi:10.1163/156939308784159516
19. Ren, W., "Compact dual-band slot antenna for 2.4/5GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
20. Molina-Garcia-Pardo, J. M., J. V. Rodriguez, and L. Juan-Llacer, "Underestimation of the RMS delay spread when using uniform tapped delay lines in wireless communications ," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 872-881, 2008.
doi:10.1109/8.805904
21. Li, X., L. Yang, S. X. Gong, and Y. J. Yang, "Bidirectional high gain antenna for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009.
doi:10.1049/el:19961060
22. Zelley, C. A. and C. C. Constantinou, "A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain," IEEE Trans. Antennas Propag., Vol. 47, No. 10, 1586-1596, Oct. 1999.
doi:10.1109/TAP.2003.815415
23. Zaporozhets, A. A. and M. F. Levy, "Modeling of radiowave propagation in urban environment with parabolic equation method," Electron. Lett., Vol. 32, No. 17, 1615-1616, 1996.
doi:10.1109/TAP.2004.840853
24. Janaswamy, R., "Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1716-1728, Aug. 2003.
doi:10.1109/8.477075
25. Awadallah, R. S., J. Z. Gehman, J. R. Kuttler, and M. H. Newkirk, "Effects of lateral terrain variations on tropospheric radar propagation," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 420-434, Jan. 2005.
26. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, No. 12, 1460-1463, Dec. 1995.