Vol. 13
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-03-05
Analytical Expression of the Magnetic Field Created by Tile Permanent Magnets Tangentially Magnetized and Radials Current in Massive Disks
By
Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009
Abstract
In this paper, we present new expressions for calculating the magnetic field produced by either tile permanent magnets tangentially magnetized or by radial currents in massive disks. These expressions are fully analytical, that is, we do not use any special functions for calculating them. In addition, they are three-dimensional and can be used for calculating the magnetic field for all regular points in space. The expressions commonly used for calculating the magnetic field produced by radial currents in massive disks are often based on elliptic integrals or semi-analytical forms. We propose in this paper an alternative analytical method that can also be used for tile permanent magnets. Indeed, by using the analogy between the coulombian model and the amperian current model, radial currents in massive disks can be represented by using the fictitious magnetic pole densities that are located on two faces of a tile permanent magnet tangentially magnetized. The two representations are equivalent and thus, the shape of magnetic field produced is the same for all points in space, with a smaller value in the case of it is produced by radial currents in massive disks. Such expressions can be used for realizing easily parametric studies.
Citation
Romain Ravaud, and Guy Lemarquand, "Analytical Expression of the Magnetic Field Created by Tile Permanent Magnets Tangentially Magnetized and Radials Current in Massive Disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009.
doi:10.2528/PIERB09012704
References

1. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131

2. Babic, S. and M. M. Gavrilovic, "New expression for calculating magnetic fields due to current-carrying solid conductors," IEEE Trans. Magn., Vol. 33, No. 5, 4134-4136, 1997.
doi:10.1109/20.619687

3. Babic, S. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

4. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

5. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, PIER 88, 307-319, 2008.

6. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

7. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
doi:10.1109/20.280997

8. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, "Magnetic field evaluation for thick annular conductors," IEEE Trans. Magn., Vol. 29, No. 3, 2090-2094, 1993.
doi:10.1109/20.211324

9. Azzerboni, B. and G. Saraceno, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
doi:10.1109/20.717601

10. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

11. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587

12. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, 1997.
doi:10.1109/20.573849

13. Furlani, E. P., "A two-dimensional analysis for the coupling of magnetic gears," IEEE Trans. Magn., Vol. 33, No. 3, 2317-2321, 1997.
doi:10.1109/20.573848

14. Furlani, E. P., "Field analysis and optimization of ndfeb axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603

15. Mayergoyz, D. and E. P. Furlani, "The computation of magnetic fields of permanent magnet cylinders used in the electrophotographic process," J. Appl. Phys., Vol. 73, No. 10, 5440-5442, 1993.
doi:10.1063/1.353709

16. Elies, P. and G. Lemarquand, "Analytical optimization of the torque of a permanent-magnet coaxial synchronous coupling," IEEE Trans. Magn., Vol. 34, No. 4, 2267-2273, 1998.
doi:10.1109/20.703865

17. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
doi:10.1109/20.799068

18. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002.

19. Babic, S. and C. Akyel, "An improvement in the calculation of the magetic field for an arbitrary geometry coil with rectangular cross section," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 493-504, November 2005.

20. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: filamentary circular coilmassive circular solenoid," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
doi:10.1109/TMAG.2003.810550

21. Babic, S., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3d linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

22. Selvaggi, J. P., S. Salon, O. M. Kwon, M. V. K. Chari, and M. DeBortoli, "Computation of the external magnetic field, near-field or far-field from a circular cylindrical magnetic source using toroidal functions," IEEE Trans. Magn., Vol. 43, No. 4, 1153-1156, 2007.
doi:10.1109/TMAG.2007.892275

23. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
doi:10.1109/TMAG.2007.902995

24. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653

25. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Ironless loudspeakers with ferrofluid seals," Archives of Acoustics, Vol. 33, No. 4, 3-10, 2008.

26. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
doi:10.1049/ip-epa:20010512

27. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
doi:10.1109/TMAG.1981.1061166

28. Zhu, Z., G. W. Jewell, and D. Howe, "Design considerations for permanent magnet polarised electromagnetically actuated brakes," IEEE Trans. Magn., Vol. 31, No. 6, 3743-3745, 1995.
doi:10.1109/20.489757

29. Abele, M., J. Jensen, and H. Rusinek, "Generation of uniform high fields with magnetized wedges," IEEE Trans. Magn., Vol. 33, No. 5, 3874-3876, 1997.
doi:10.1109/20.619600

30. Baran, W. and M. Knorr, "Synchronous couplings with sm co5 magnets," 2nd Int. Workshop on Rare-Earth Cobalt Permanent Magnets and Their Applications, 140-151, Dayton, Ohio, USA, 1976.

31. Remy, M., G. Lemarquand, B. Castagnede, and G. Guyader, "Ironless and leakage free voice-coil motor made of bonded magnets," IEEE Trans. Magn., Vol. 44, No. 11, 2008.
doi:10.1109/TMAG.2008.2003401

32. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, 2001.
doi:10.1109/20.917185

33. Blache, C. and G. Lemarquand, "High magnetic field gradients in flux confining permanent magnet structures," Journal of Magnetism and Magnetic Materials, Vol. 104, 1111-1112, 1992.
doi:10.1016/0304-8853(92)90510-U

34. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441

35. Charpentier, J. F. and G. Lemarquand, "Optimization of unconventional p.m. couplings," IEEE Trans. Magn., Vol. 38, No. 2, 1093-1096, 2002.
doi:10.1109/20.996280

36. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
doi:10.1109/TMAG.2007.897739