Vol. 13
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-02-20
Waveguide Simulation Using the High-Order Symplectic Finite-Difference Time-Domain Scheme
By
Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009
Abstract
The high-order symplectic finite-difference time-domain scheme is applied to modeling and simulation of waveguide structures. First, the perfect electric conductor boundary is treated by the image theory. Second, to excite all possible modes, an efficient source excitation method is proposed. Third, the modified perfectly matched layer is extended to its high-order form for absorbing the evanescent waves. Finally, a high-order scattering parameter extraction technique is developed. The cases of waveguide resonator, waveguide discontinuities, and periodic waveguide structure demonstrate that the high-order symplectic finite-difference time-domain scheme can obtain better numerical results than the traditional finite-difference timedomain method and save computer resources.
Citation
Wei E. I. Sha, Xian-Liang Wu, Zhixiang Huang, and Ming-Sheng Chen, "Waveguide Simulation Using the High-Order Symplectic Finite-Difference Time-Domain Scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A., Computational Electrodynamics: The Finitedifference Time-domain Method, Artech House, 1995.

3. Christ, A. and H. L. Hartnagel, "Three-dimensional finitedifference method for the analysis of microwave-device embedding," IEEE Trans. on Microwave Theory and Techniques, Vol. 35, 688-696, 1987.
doi:10.1109/TMTT.1987.1133733

4. Chu, S. T., W. P. Huang, and S. K. Chaudhuri, "Simulation and analysis of wave-guide based optical integrated-circuits," Computer Physics Communications, Vol. 68, 451-484, Nov. 1991.
doi:10.1016/0010-4655(91)90213-5

5. Krupezevic, D. V., V. J. Brankovic, and F. Arndt, "Wave-equation FD-TD method for the efficient eigenvalue analysis and S-matrix computation of waveguide structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 41, 2109-2115, 1993.
doi:10.1109/22.260694

6. Vielva, L. A., J. A. Pereda, A. Prieto, and A. Vegas, "FDTD multimode characterization of waveguide devices using absorbing boundary conditions for propagating and evanescent modes," IEEE Microwave and Guided Wave Letters, Vol. 4, 160-162, 1994.
doi:10.1109/75.294278

7. Zhao, A. P. and A. V. Raisanen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Trans. on Microwave Theory and Techniques, Vol. 44, 1535-1539, 1996.
doi:10.1109/22.536601

8. Shibata, T. and T. Itoh, "Generalized-scattering-matrix modeling of waveguide circuits using FDTD field simulations," IEEE Trans. on Microwave Theory and Techniques, Vol. 46, 1742-1751, 1998.
doi:10.1109/22.734574

9. Gwarek, W. K. and M. Celuch-Marcysiak, "Wide-band Sparameter extraction from FD-TD simulations for propagating and evanescent modes in inhomogeneous guides," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, 1920-1928, 2003.
doi:10.1109/TMTT.2003.815265

10. Wang, S. and F. L. Teixeira, "An equivalent electric field source for wideband FDTD simulations of waveguide discontinuities," IEEE Microwave and Wireless Components Letters, Vol. 13, 27-29, 2003.
doi:10.1109/LMWC.2002.807714

11. Gwarek, W. K. and M. Celuch-Marcysiak, "Differential method of reflection coefficient extraction from FDTD simulations," IEEE Microwave and Guided Wave Letters, Vol. 6, 215-217, 1996.
doi:10.1109/75.491510

12. Young, J. L., D. Gaitonde, and J. S. Shang, "Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach ," IEEE Trans. on Antennas and Propagation, Vol. 45, 1573-1580, Nov. 1997.
doi:10.1109/8.650067

13. Yefet, A. and P. G. Petropoulos, "A staggered fourth-order accurate explicit finite difference scheme for the timedomain Maxwell's equations," Journal of Computational Physics, Vol. 168, 286-315, Apr. 2001.
doi:10.1006/jcph.2001.6691

14. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Techniques, Vol. 44, 555-571, 1996.
doi:10.1109/22.491023

15. Cao, Q. S., Y. C. Chen, and R. Mittra, "Multiple image technique (MIT) and anistropic perfectly matched layer (APML) in implementation of MRTD scheme for boundary truncations of microwave structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, 1578-1589, Jun. 2002.
doi:10.1109/TMTT.2002.1006420

16. Shao, Z., Z. Shen, Q. He, and G. Wei, "A generalized higher order finite-difference time-domain method and its application in guided-wave problems," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, 856-861, 2003.
doi:10.1109/TMTT.2003.808627

17. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, 1640-1648, Sep. 2001.
doi:10.1109/22.942578

18. Sha, W., Z. X. Huang, M. S. Chen, and X. L. Wu, "Survey on symplectic finite-difference time-domain schemes for Maxwell's equations," IEEE Trans. on Antennas and Propagation, Vol. 56, 493-500, Feb. 2008.
doi:10.1109/TAP.2007.915444

19. Yoshida, H., "Construction of higher order symplectic integrators," Physica D: Nonlinear Phenomena, Vol. 46, 262-268, Nov. 1990.

20. Sha, W., X. L. Wu, Z. X. Huang, and M. S. Chen, "Maxwell's equations, symplectic matrix, and grid," Progress In Electromagnetics Research B, Vol. 8, 115-127, 2008.
doi:10.2528/PIERB08052303

21. Sha, W., Z. X. Huang, X. L. Wu, and M. S. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," Journal of Computational Physics, Vol. 225, 33-50, Jul. 2007.
doi:10.1016/j.jcp.2006.11.027

22. Chen, B., D. G. Fang, and B. H. Zhou, "Modified Berenger PML absorbing boundary condition for FDTD meshes," IEEE Microwave and Guided Wave Letters, Vol. 5, 399-401, Nov. 1995.
doi:10.1109/75.473529

23. Abarbanel, S. and D. Gottlieb, "A mathematical analysis of the PML method," Journal of Computational Physics, Vol. 134, 357, 1997.
doi:10.1006/jcph.1997.5717

24. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, Wiley-IEEE Press, 2000.