Vol. 7
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-20
Electrically Small Antenna Inspired by Spired Split Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009
Abstract
A simple metamaterial resonator structure based efficiency electrically small semi-circular loop antenna (ESSCLA) is proposed. It is demonstrated numerically that capacitive offered by the simple metamaterial resonator structure can counteract inductive impedance of the ESSCLA at the resonance frequency. The overall structures of ESSCLA can be fabricated on one dielectric substrate, and match conjugate to a 50 Ohm coaxial transmission line source without additional matching network. The size of the proposed ESSCLA is ka = 0.6745 by Chu limit. The resonance frequency is 3.2239 GHz, and impedance bandwidth (S11<-10) is from 3.19 GHz to 3.26 GHz about 0.07 GHz, the relative bandwidth is about 2.2%. The measure results accord with the simulation results well. The peak gain is 4.58 dB. The radiation efficiency is 97.81%, the overall efficiency is 96.71% at the resonance frequency. The proposed antenna has advantages of efficiency, high gain, low cost, small size, and light weight and will be applied to wireless communication systems for required small antennas.
Citation
Zhangshan Duan, Shaobo Qu, and Yiwei Hou, "Electrically Small Antenna Inspired by Spired Split Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.
doi:10.2528/PIERL09012005
References

1. Wheeler, H. A., "Fundamental limitations of small antennas," IRE Proc., Vol. 35, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

2. Chu, L. J., "Physical limitations in omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

3. Thal, H. L., "New radiation Q limits for spherical wire antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 10, October 2006.
doi:10.1109/TAP.2006.882184

4. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 3, March 2005.
doi:10.1109/TAP.2004.842600

5. Foltz, H. D., J. S. McLean, and G. Crook, "Disk-loaded monopoles with parallel strip elements," IEEE Trans. Antennas Propag., Vol. 46, 1894-1896, 1998.
doi:10.1109/8.743844

6. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

7. Ziolkowski, R. W. and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, 2626-2640, October 2003.
doi:10.1109/TAP.2003.817561

8. Ziolkowski, R. W. and A. D. Kipple, "Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically emall antennas in the presence of nested metamaterial shells," Physical Review E, Vol. 72, 036602, September 2005.
doi:10.1103/PhysRevE.72.036602

9. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, 2113-2130, July 2006.
doi:10.1109/TAP.2006.877179

10. Ziolkowski, R. W. and A. Erentok, "At and beyond the chu limit: Passive and active broad bandwidth metamaterial-based efficient electrically small antennas," IET Microw., Antennas Propag., Vol. 1, 116-128, February 2007.
doi:10.1049/iet-map:20050342

11. Kim, H. Y., J. K. Kim, J. H. Kim, Y. J. Kim, and H. M. Lee, "Design of metamaterial structure based electrically small monopole antenna," 2007 Autumn Microwave & Radio Wave Conference, Vol. 30, 577-580, September 2007.

12. Ghosh, B., S. Ghosh, and A. B. Kakade, "Investigation of gain enhancement of electrically small antennas using double-negative, single-negative, and double-positive materials," Physical Review E, Vol. 78, 026611, 2008.
doi:10.1103/PhysRevE.78.026611

13. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, 1644-1653, 2006.

14. Stuart, H. R., "The application of negative permittivity materials and metamaterials in electrically small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 460-462, 2007.
doi:10.1109/LAWP.2007.905018

15. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-706, March 2008.
doi:10.1109/TAP.2008.916949

16. Li, L.-W., C.-P. Lim, and M.-S. Leong, "Near fields of electrically small thin square and rectangular loop antennas," Progress In Electromagnetics Research, Vol. 31, 181-193, 2001.
doi:10.2528/PIER00062202

17. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604

18. Balanis, C. A., Antenna Theory, 3 Ed., Wiley, 2005.

19. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

20. Ziolkowski, R. W., "Reply to "Comments on ‘Application of double negative materials to increase the power radiated by electrically small antennas’ "," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February 2006.
doi:10.1109/TAP.2005.863161

21. Kildal, P.-S., "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 766, February 2006.
doi:10.1109/TAP.2005.863160