Vol. 7
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-16
Three-Dimensional Metamaterial Microwave Absorbers Composed of Coplanar Magnetic and Electric Resonators
By
Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009
Abstract
In this paper, a 3-dimensional metamaterial absorber operating at 11.8 GHz was presented. The metamaterial absorber is composed of coplanar magnetic and electric resonators, with the latter in the center part of the former. By carefully adjusting structural dimensions of magnetic and electric resonators, absorbance per unit cell can reach up to 96% at 11.8 GHz with a 6% FWHM (Full Width at Half Maximum). The full-wave simulations confirmed nearly equal permeability and permittivity and large imaginary part of the refractive index at 11.8 GHz and thus proved the effectiveness of the proposed 3-dimensional metamaterial absorber for microwave applications.
Citation
Jiafu Wang, Shaobo Qu, Zhentang Fu, Hua Ma, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao, "Three-Dimensional Metamaterial Microwave Absorbers Composed of Coplanar Magnetic and Electric Resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809

5. Ourir, A., A. D. Lustrac, and J.-M. Lourtioz, "All-metamaterial-based subwavelength cavities λ/60 for ultrathin directive antennas," Appl. Phys. Lett., Vol. 88, 084103, 2006.
doi:10.1063/1.2172740

6. Alú, A., F. Bilotti, N. Engheta, and L. Vegni, "Sub-wavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401

7. Bilotti, F., A. Toscano, L. Vegni, K. B. Alici, K. Aydin, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

8. A., F. Bilotti, N. Engheta, L. Vegni and A conformal omni-directional sub-wavelength metamaterial leaky-wave antenna, "Alú," IEEE Trans. Antennas Propagat., Vol. 55, No. 6, 1698-1708, 2007.
doi:10.1109/TAP.2007.898615

9. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105

10. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, T. M. Grzegorczyk, and , "Experimental study on several left-handed metamaterials," Progress in Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

11. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
doi:10.2528/PIER06062103

12. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and C. Gu, "A candidate three-dimensional GHz lefthanded metamaterial composed of coplanar magnetic and electric resonators," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 183-187, 2008.
doi:10.1016/j.photonics.2008.08.001

13. Kisel, V. N. and A. N. Lagarkov, "Near-perfect absorption by a flat metamaterial plate," Phys. Rev. E, Vol. 76, 065601, 2007.
doi:10.1103/PhysRevE.76.065601

14. Kern, D. J. and D. H. Werner, "A generic algorithm approach to the design of ultra-thin electromagnetic band-gap absorber," Microwave Opt. Tech. Lett., Vol. 38, No. 1, 61-64, 2003.
doi:10.1002/mop.10971

15. Chakravarty, S., R. Mittra, and N. R. Williams, "On the pplication of the micro-Genetic Algorithm (MGA) to the design of broadband microwave absorbers comprising frequency selective surface (FSS) embedded in multilayered dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 6, 1050-1059, 2001.
doi:10.1109/22.925490

16. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Opt. Tech. Lett., Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891

17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, S. Sajuyigbe, J. J. Mock, D. R. Smith, and , "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

18. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181

19. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104

20. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617