Vol. 7
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-27
Analysis of a High-Gain Fabry-PÉRot Cavity Antenna with an FSS Superstrate: Effective Medium Approach
By
Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009
Abstract
A new approach to analyze the behavior of a high-gain antenna covered with a frequency selective surface (FSS) superstrate is presented. Using an image theory and effective constitutive parameter retrieval, properties of impedance and a refractive index of the entire cavity structure are investigated. Through the analysis, we show that our antenna inherently operates in the medium whose maximum index of refraction is lower than ‘0.5'. Furthermore, we also demonstrate that the high-gain feature of the Fabry-Perot cavity antenna is not only due to satisfy a conventional cavity resonance condition, but also for a material of an effectively low index of refraction.
Citation
Dongho Kim, and Jae-Ick Choi, "Analysis of a High-Gain Fabry-PÉRot Cavity Antenna with an FSS Superstrate: Effective Medium Approach," Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009.
doi:10.2528/PIERL09011801
References

1. Sirier, C., R. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "1-D photonic bandgap resonator antenna," Microwave Opt. Tech. Lett., Vol. 29, No. 5, 312-315, Jun. 2001.
doi:10.1002/mop.1164

2. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile highgain EBG resonator antennas using a genetic algorithm," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 480-483, 2007.
doi:10.1109/LAWP.2007.907054

3. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetic Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

4. Leger, L., R. Granger, M. Thevenot, T. Monediere, and B. Jecko, "Multifrequency dielectric EBG antenna," Microwave Opt. Tech. Lett., Vol. 40, No. 5, 420-423, Mar. 2004.
doi:10.1002/mop.11398

5. Weily, A. R., T. S. Bird, and Y. H. Guo, "A reconfigurable highgain partially reflecting surface antenna," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3382-3390, Nov. 2007.
doi:10.1109/TAP.2008.2005538

6. Gardelli, R., M. Albani, and F. Capolino, "Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 1979-1990, Jul. 2006.
doi:10.1109/TAP.2006.877172

7. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 41, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

8. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, J. Lu, T. M. Grzegorczyk, J. A. Kong, P. Kao, P. A. Theophelakes, and M. J. Hogan, "Anisotropic metamaterials as antenna substrate to enhance directivity," Microwave Opt. Tech. Lett., Vol. 48, No. 4, 680-683, Apr. 2006.
doi:10.1002/mop.21441

9. CST Microwave Studio: Workflow & Solver Overview, CST Studio Suite 2008, 2008.

10. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Rev. E, Vol. 71, No. 036617, 2005.