Vol. 90
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-17
Depth Detection of Conducting Marine Mines via Eddy-Current and Current-Channeling Response
By
Progress In Electromagnetics Research, Vol. 90, 287-307, 2009
Abstract
A novel scheme for detecting the location of a metallic mine (modeled as a perfectly conducting sphere and spheroid) in marine environment is presented. This technique takes into account Eddy-Current response (ECR) induced on the conducting marine mines as well as Current-Channeling response (CCR) associated with the perturbation of currents induced in the conductive marine environment. It leverages on the unique electromotive force (EMF) induced in a receiving coil through different orientations of a transmitting coil with respect to the marine mine. Unlike conventional EM sensing apparatus which is used to carry out the measurement at just one attitude at a fixed angle with respect to buried mine, our proposed scheme consists of angular scanning via the symmetry axes of a concentric sensor over the metallic mine in order to obtain a unique normalized induced voltage determining the mine's depth. Simulated results show that this technique has the potential of extending the depth detection range compared with the current method especially in conductive marine environment up to about 2 meters away from the sensor.
Citation
Masoud Mahmoudi, and Soon Yim Tan, "Depth Detection of Conducting Marine Mines via Eddy-Current and Current-Channeling Response," Progress In Electromagnetics Research, Vol. 90, 287-307, 2009.
doi:10.2528/PIER09011301
References

1. Won, I. J., S. Norton, B. SanFilipo, and F. Funak, "Active broadband electromagnetic detection and classification of buried naval mines," MTS/IEEE Oceans'02, Vol. 2, 966-973, Oct. 2002.
doi:10.1109/OCEANS.2002.1192099

2. Wu, R., J. Liu, T. Li, Q. Gao, H. Li, and B. Zhang, "Progress in the research of ground bounce removal for landmine detection with ground penetrating radar ," PIERS Online, Vol. 1, No. 3, 336-340, 2005.
doi:10.2529/PIERS041130195615

3. Won, I. J., D. A. Keiswetter, and T. H. Bell, "Electromagnetic induction spectroscopy for clearing landmines," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, 703-709, Apr. 2001.
doi:10.1109/36.917876

4. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave X-band frequency," Progress In Electromagnetics Research, PIER 79, 225-250, 2008.

5. Fernandez, J. P., K. Sun, B. Barrowes, K. O'Neill, I. Shamatava, F. Shubitidze, and K. Paulsen, "Inferring the location of buried UXO using a support vector machine," Proc. SPIE, Vol. 6553, Orlando Florida, Apr. 11-12, 2007.

6. Weichman, P. B. and E. M. Lavely, "Study of inverse problems for buried UXO discrimination based on EMI sensor data," Proceedings of the SPIE, Vol. 5089, 1189-1200, 2003.
doi:10.1117/12.487145

7. Sun, Y., X. Li, and J. Li, "Practical landmine detector using forward-looking ground penetrating radar," Electronics Letters, Vol. 41, 97-98, Jan. 2005.
doi:10.1049/el:20057339

8. Moustafa, K. and K. F. A. Hussein, "Performance evaluation of separated aperture sensor GPR system for land mine detection," Progress In Electromagnetics Research, PIER 72, 21-37, 2007.

9. Zainud-Deen, S. H., M. E. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with corrugated ground plane surface as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

10. Sato, M., Y. Hamada, X. Feng, F. Kong, Z. Zeng, and G. Fang, "GPR using an array antenna for landmine detection," Near Surface Geophysics, 3-9, 2004.

11. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318

12. SanFilipo, B., S. Norton, and I. J. Won, "The effects of seawater on the EMI response of UXO," OCEANS, 2005. Proceedings of MTS/IEEE, Vol. 1, 607-614, 2005.

13. Lindell, I. V. and A. H. Sihvola, "Reflection and transmission of waves at the interface of perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research B, Vol. 5, 169-183, 2008.
doi:10.2528/PIERB08022010

14. Xu, L., Y. C. Guo, and X. W. Shi, "Dielectric half space model for the analysis of scattering from objects on ocean surface," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2287-2296, 2007.
doi:10.1163/156939307783134272

15. Abo-Seida, O. M., "Far-field due to a vertical magnetic dipole in sea," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 707-715, 2006.
doi:10.1163/156939306776143406

16. Vafeas, P., G. Perrusson, and D. Lesselier, "Low-frequency solution for a perfectly conducting sphere in a conductive medium with dipolar excitation," Progress In Electromagnetics Research, PIER 49, 87-111, 2004.

17. Braunisch, H. H., C. O. Ao, K. O'Neill, and J. A. Kong, "Magnetoquasistatic response of conducting and permeable prolate spheroid under axial excitation ," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 12, 2689-2701, Dec. 2001.
doi:10.1109/36.975003

18. Das, Y., J. E. Mcfee, and R. H. Chesney, "Determination of depth of shallowly buried objects by electromagnetic induction," IEEE Trans. Geoscience and Remote Sensing, Vol. 23, 60-66, Jan. 1985.
doi:10.1109/TGRS.1985.289501

19. Norton, S. J. and I. J. Won, "Identification of buried unexploded ordnance from broadband electromagnetic induction data," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, 2253-2261, Oct. 2001.

20. Ao, C. O., H. Braunisch, K. O'Neill, and J. A. Kong, "Quasi-magnetostatic solution for a conducting and permeable spheroid with arbitrary excitation ," IEEE Trans. Geoscience and Remote Sensing, Vol. 40, No. 4, 887-897, Apr. 2002.
doi:10.1109/TGRS.2002.1006370

21. Norton, S. J., W. A. SanFilipo, and I. J. Won, "Eddy-current and current-channeling response to spheroidal anomalies," IEEE Trans. Geoscience and Remote Sensing, Vol. 43, No. 10, 2200-2209, Oct. 2005.
doi:10.1109/TGRS.2005.856641

22. Mukerji, S. K., M. George, and M. B. Ramamurthy, "Eddy currents in solid rectangular cores," Progress In Electromagnetics Research B, Vol. 7, 117-131, 2008.
doi:10.2528/PIERB08022801

23. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.

24. Kotsis, A. D. and J. A. Roumeliotis, "Electromagnetic scattering by a metallic spheroid using shape perturbation method," Progress In Electromagnetics Research, PIER 67, 113-134, 2007.

25. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coating with a shell of double-negative metamaterials," Progress In Electromagnetics Research, 241-255, PIER 82, 2008.