Vol. 6
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-10
Design of Narrowband Bandpass Filter on Coplanar Waveguide Using Spiral Slots
By
Progress In Electromagnetics Research Letters, Vol. 6, 139-148, 2009
Abstract
A configuration for a miniaturized band-pass filter on a coplanar waveguide (CPW) is proposed in this communication. Parametric studies conducted for various geometrical parameters suggest that the frequency response of the filter is strongly related to that of the spiral slots. But a series gap on the center conductor of the CPW changes the overall response of the device For validation of these concepts, a bandpass filter operating at about 3.5 GHz has been designed, fabricated and tested. Experimental results show good agreement with electromagnetic simulations. The design for a microwave laminate shown here requires an area of approximately 0.1λ0 x 0.1λ0.
Citation
Kalarickaparambil Vinoy, and P. Umamaheshwara Reddy, "Design of Narrowband Bandpass Filter on Coplanar Waveguide Using Spiral Slots," Progress In Electromagnetics Research Letters, Vol. 6, 139-148, 2009.
doi:10.2528/PIERL08122703
References

1. Levy, R., R. V. Snyder, and G. L. Matthaei, "Design of microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 50, 783-793, Mar. 2002.
doi:10.1109/22.989962

2. Su, H. T., F. Huang, and M. J. Lancaster, "Highly miniature HTS microwavefilters," IEEE Trans. Appl. Superconduct., Vol. 11, 349-352, Mar. 2001.
doi:10.1109/77.919354

3. Azadegan, R. and K. Sarabandi, "Miniature high-Q double spiral slot-line resonator filters," IEEE Trans. Microwave Theory Tech., Vol. 52, 1548-1557, May 2004.
doi:10.1109/TMTT.2004.827044

4. Lim, J.-S., C.-S. Kim, Y.-T. Lee, D. Ahn, and S. Nam, "A spiral-shaped defected ground structure for coplanar waveguid," IEEE Microw. & Wireless Comp. Lett., Vol. 12, 330-332, Sep. 2002.
doi:10.1109/LMWC.2002.803208

5. Liao, S.-S., P.-T. Sun, H.-K. Chen, and X.-Y. Liao, "Compact-size coplanar waveguide bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 241-243, 2003.
doi:10.1109/LMWC.2003.814601

6. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground," Progress In Electromagnetics Research, Vol. 82, 151-168, 2008.
doi:10.2528/PIER08030101

7. Naghshvarian-Jahroomi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research B, Vol. 3, 87-93, 2008.

8. Zheng, J., J.-Z. Gu, B. Cul, and X. W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with tri-section SIR," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

9. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.2528/PIER08102303

10. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

11. Reddy, P. U., "Numerical and experimental studies on bandpass filters using spiral shaped slots on ground traces of coplanar waveguides,", Masters Project Report, Dept. of ECE, Indian Institute of Science, Bangalore, Jun. 2007.

12. Koul, V. and K. J. Vinoy, "Planar slotted ground structures for miniaturization of microwave circuits," URSI General Meeting, Commission C, New Delhi, Oct. 2005.

13. Hamad, E. K. I., A. M. E. Safwat, and A. S. Omar, "Controlled capacitance and inductance behavior of L-shaped defected ground structure for coplanar waveguide," IEE Proc. Microwaves Antennas & Propagation, Vol. 152, No. 5, 299-304, Oct. 2005 .
doi:10.1049/ip-map:20045166