Vol. 90
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-05
Broadband Experimental Characterization of Artificial Magnetic Materials Based on a Microstrip Line Method
By
Progress In Electromagnetics Research, Vol. 90, 1-13, 2009
Abstract
A broadband method is introduced to measure the effective constitutive parameters of artificial magnetic materials. The method is based on the microstrip line topology, thus making it easy to retrieve the constitutive parameters over a wide band of frequencies. To demonstrate the effectiveness of this method, artificial magnetic materials with Fractal Hilbert inclusions are fabricated and characterized. Good agreement between the experimental and numerical simulation results verifies the accuracy of the proposed method.
Citation
Leila Yousefi, Hussein Attia, and Omar M. Ramahi, "Broadband Experimental Characterization of Artificial Magnetic Materials Based on a Microstrip Line Method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904
References

1. Rozanova, K. N., Z. W. Li, L. F. Chen, and M. Y. Koledintseva, "Microwave permeability of co2z composites," Journal of Applied Physics, Vol. 97, 013905, 2004.
doi:10.1063/1.1827911

2. Adenot, A. L., O. Acher, T. Taffary, and L. Longuet, "Sum rules on the dynamic permeability of hexagonal ferrites," Journal of Applied Physics, Vol. 91, 7601-7603, 2002.
doi:10.1063/1.1447505

3. Acher, O. and A. L. Adenot, "Bounds on the dynamic properties of magnetic materials," Physical Review B, Vol. 62, No. 17, 11324-11327, 2000.
doi:10.1103/PhysRevB.62.11324

4. Yao, H. Y., L. W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from micrsocopic 2-D isotropic cross split-ring resonator array," Progress In Electromagnetics Research, PIER 51, 197-217, 2005.

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Nov. 1999.

6. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, PIER 51, 49-63, 2005.

7. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, PIER 54, 61-81, 2005.

8. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech., Vol. 54, 135-146, Jan. 2006.
doi:10.1109/TMTT.2005.860329

9. Yousefi, L. and O. M. Ramahi, "New artificial magnetic materials based on fractal hilbert curves," Proceeding of IWAT07, 237-240, 2007.

10. Ikonen, P. M. T., P. M. T., S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, "On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas," IEEE Trans. on Antenna Propagation, Vol. 54, 1654-1662, 2006.
doi:10.1109/TAP.2006.875912

11. Chen, L., C. K. Ong, and B. T. G. Tan, "Cavity perturbation technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics," IEEE Trans. Instrum. Meas., Vol. 48, 1023-1030, 1999.
doi:10.1109/19.816108

12. Buell, K. and K. Sarabandi, "A method for characterizing complex permittivity and permeability of meta-materials," Proceeding of IEEE Antennas and Propagation Society International Symposium, Vol. 2, 408-411, 2002.

13. Greegor, R. B., C. G. Parazzoli, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental determination and numerical simulation of the properties of negative index of refraction materials," Optics Express, Vol. 11, 688-695, 2003.

14. Starr, A. F., P. M. Rye, D. R. Smith, and S. Nemat-Nasser, "Fabrication and characterization of a negative-refractive-index composite metamaterial," Physical Review B, Vol. 70, 113102, 2004.
doi:10.1103/PhysRevB.70.113102

15. Smith, D. R., D. Schurig, and J. J. Mock, "Characterization of a planar artificial magnetic metamaterial surface," Physical Review E, Vol. 74, 036604, 2006.
doi:10.1103/PhysRevE.74.036604

16. Damascos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. E. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory and Tech., Vol. 32, No. 4, 400-405, 1984.
doi:10.1109/TMTT.1984.1132689

17. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944

18. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

19. Queffelec, P., P. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity," IEEE Transactions on Magnetics, Vol. 30, No. 2, 224-231, 1994.
doi:10.1109/20.312262

20. Heping, Y., K. Virga, and J. Prince, "Dielectric constant and loss tangent measurement using a stripline fixture," IEEE Trans. on Advanced Packaging, Vol. 21, 441-446, 1999.

21. Hinojosa, J., L. Faucon, P. Queffelec, and F. Huret, "S-parameter broadband measurements of microstrip lines and extraction of the substrate intrinsic properties," Microwave and Optical Technology Letters, Vol. 30, No. 1, 65-69, 2001.
doi:10.1002/mop.1222

22. Bekker, V., K. Seemann, and H. Leiste, "A new strip line broad-band measurement evaluation for determining the complex permeability of thin ferromagnetic films," Journal of Magnetism and Magnetic Materials, Vol. 270, No. 3, 327-332, 2004.
doi:10.1016/j.jmmm.2003.08.033

23. Hinojosa, J., "Permittivity characterization from open-end microstrip line measurements," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1371-1371, 2007.
doi:10.1002/mop.22410

24. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheets," IEEE Trans. Microwave Theory Tech., Vol. 13, No. 2, 172-185, 1965.
doi:10.1109/TMTT.1965.1125962

25. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates," IEEE Trans. Microwave Theory Tech., Vol. 20, 304-313, 1972.
doi:10.1109/TMTT.1972.1127749

26. Dennis, J. E. and R. B. Schnabel, "Numerical methods for unconstrained optimization and nonlinear equations,", New Jersey, Prentice-Hall, USA, 1983.