Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-12-30
Analysis of Dielectric Body by Using Volume Integral Equation Combined with Multi-Region Iterative Method
By
Progress In Electromagnetics Research M, Vol. 5, 161-169, 2008
Abstract
In this research, a fast approach of method of moments (MoM) for analyzing 3-D dielectric body is proposed. The unknown polarization current in dielectric body is expanded into rectangular blocks with overlapping volume sinusoidal basis functions. To accelerate the matrix-solving CPU time in MoM, the multi-region iterative method, where the overlapping blocks are used as the iteration units, is applied to solving the matrix equation in the MoM. Some numerical results are given to show that the CPU time for solving unknown currents can be reduced effectively by multi-region iterative method.
Citation
Huiqing Zhai, Qiaowei Yuan, Qiang Chen, and Kunio Sawaya, "Analysis of Dielectric Body by Using Volume Integral Equation Combined with Multi-Region Iterative Method," Progress In Electromagnetics Research M, Vol. 5, 161-169, 2008.
doi:10.2528/PIERM08113002
References

1. Karimullah, K., K. M. Chen, and D. P. Nyquist, "Electromagnetic coupling between a thin-wire antenna and a neighboring biological body: Theory and experiment ," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 11, 1218-1225, Nov. 1980.

2. Ofuji, Y., D. Koizumi, Q. Chen, and K. Sawaya, "Method of moments for dielectric scatters by using block modeling with Galerkin's method," IEEE Antennas Propag. Soc. Symp., Vol. 4, 2314-2317, 2000.

3. Yoshikawa, Y., H. Miyashita, I. Chiba, and S. Makino, "Integral degree reduction of impedance matrix elements in polarization current moment method," IEICE Trans. Elec., Vol. J86-B, No. 9, 1721-1730, Sep. 2003 (Japanese edition)..

4. Zhai, H. Q., Q. W. Yuan, Q. Chen, and K.Sawaya, "Analytical expressions of self/mutual impedance between volume sinusoidal monopoles," IEICE Technical Report A·P2007, University of Fukui, Japan, 2007.

5. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions ," J. Comput. Phys., Vol. 36, No. 2, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

6. Zhao, L., T. J. Cui, and W. Li, "An efficient algorithm for EM scattering by electrically large dielectric objects using MR-QEB iterative scheme and CG-FFT method," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902

7. Shafai, L., "Aprogressiv e numerical method and its application to large field problems in antennas and electromagnetic scattering," Canadian Electrical Engineering Journal, No. 2, 867-877, 1997.

8. Ye, Q. and L. Shafai, "Performance of the progressive numerical method and its comparison with the modified spatial decomposition technique in solving large scattering problems," IEE Proc. Microwave Antennas Propag., Vol. 145, No. 1, 169-173, 1998.
doi:10.1049/ip-map:19981656

9. Chen, Q., Q. W. Yuan, and K. Sawaya, "Fast algorithm for solving matrix equation in MoM analysis of large-scale array antennas," IEICE Trans. Commun., Vol. E85-B, No. 11, 2482-2488, Nov. 2002.

10. Zhai, H. and C. Liang, "Afast wideband analysis of radiation and scattering problems by impedance-matrix interpolation combined with progressive numerical method," Microwave and Optical Technology Letters, Vol. 43, No. 1, Oct. 2004.

11. Brennan, C., P. Cullen, and M. Condon, "A novel solution of the three dimensional electric field integral equation," IEEE Antennas and Propag., Vol. 52, 2781-2784, Oct. 2004.
doi:10.1109/TAP.2004.834405

12. Chen, Q., Q. Yuan, and K. Sawaya, "Convergence of SOR in MoM analysis of array antenna," IEICE Transactions on Communications, Vol. E88-B, No. 5, 2220-2223, May 2005.
doi:10.1093/ietcom/e88-b.5.2220

13. Al Sharkawy, M., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moments techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.
doi:10.2528/PIER05071001