Vol. 6
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-01-08
Spatial-Spectral Formulation of Method of Moment for Rigorous Analysis of Microstrip Structures
By
Progress In Electromagnetics Research Letters, Vol. 6, 17-26, 2009
Abstract
In this paper, we present an efficient hybrid spatial-spectral formulation of the method of moment (MoM) in conjunction with the Mixed-Potential Integral Equation (MPIE) for planar circuit analysis. This method is based on the decomposition of the Green's functions in two parts: quasi-static in the near field region and the dynamic contribution in the far field region. Using this decomposition of Green's functions, the method of moment matrix entries can be reduced and expressed to a sum of two integrals. The first one is expressed in the spatial field and corresponds to the quasi-static contribution. It is analytically evaluated after a development in Taylor series of the exponential terms in the function to integrate. The integrals expressed in the spectral field and corresponds to the dynamic part have the advantage of being calculated on a finite range and this independently of the choice of the basis and test functions. The integrals expressed in the spectral field are performed by using numerical integration. It is also demonstrated that this hybrid method has accelerated the matrix fill in time by using a Fast Fourier Transform (FFT) algorithm. In order to validate the proposed method, numerical results are presented.
Citation
Chaker Essid, M. Bassem Ben Salah, Khaled Kochlef, Abdelaziz Samet, and Ammar B. Kouki, "Spatial-Spectral Formulation of Method of Moment for Rigorous Analysis of Microstrip Structures," Progress In Electromagnetics Research Letters, Vol. 6, 17-26, 2009.
doi:10.2528/PIERL08112706
References

1. Jin, J. M. and W. C. Chew, "Computational electromagnetics: The method of moments," Electrical Engineering Handbook, Academic Press, New York, 1999.

2. Uwaro, T. and T. Itoh, "Spectral domain approach," Numerical Techniques for Microwave Millimeter-Wave Passive Structures, 334-380, John Wiley & Sons, Inc., 1989.

3. Emre, M., M. I. Aksun, and G. Dural, "Critical study of problems in discrete complex image method," IEEE EMC Symposium, Conference Proceedings Istanbul, Turkey, May 11--16, 2003.

4. Aksun, M. I. and G. Dural, "Clarification of issues on the closed form Green’s functions in stratified media," IEEE Antennas and Propagation Magazine, Vol. 53, 3644-3652, 2005.

5. Davidson, D. B. and J. T. Aberle, "An introduction to spectral domain method-of-moments formulations," IEEE Antennas and Propagation Magazine, Vol. 46, No. 3, 251-259, June 2004.
doi:10.1109/MAP.2004.1374083

6. Mariottini, F., A. Cucini, and S. Maci, "A hybrid spectral/spatial method to evaluate the active Green’s function of large planar rectangular arrays: A combined asymptotic/numerical algorithm," IEEE Transactions on Antennas and propagation., Vol. 54, No. 3, 878-887, March 2006.
doi:10.1109/TAP.2006.869903

7. Alatan, L., M. I. Aksun, K. Mahadevan, and M. T. Birand, "Analytical evaluation of the MoM matrix elements," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 9, April 1996.

8. Samet, A. and A. Bouallegue, "Fast and rigourous calculation method for MoM matrix elements in planar microstrip structures," Electronics letters., Vol. 36, No. 9, April 2000.
doi:10.1049/el:20000626

9. Essid, C., M. B. Ben Salah, A. Samet, and A. Kouki, "An efficient space domain formulation of the MoM method for planar circuits," PIERS Proceedings, 722-724, Cambridge, USA, July 2--6, 2008.

10. Chow, Y. L., Y. G. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green’s function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309

11. Aksun, M. I., "A robust approach for the derivation of closedform Green’s functions," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 651-658, 1996.
doi:10.1109/22.493917

12. Kipp, R. and C. H. Chan, "Complex image method for sources in bounded regions of multilayer structures," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 5, 860-865, 1994.
doi:10.1109/22.293536

13. Aksun, M. I., F. Caliskan, and L. Gurel, "An efficient method for electromagnetic characterization of 2-D geometries in stratified media," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 2, 1264-1274, May 2002.
doi:10.1109/22.999138

14. Park, S. O., C. A. Balanis, and C. R. Birtcher, "Analytical evaluation of the asymptotic impedance matrix of a grounded dielectric slab with roof-top functions," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 2, 251-259, February 1998.

15. Chae, C. B., J. P. Lee, and S. O. Park, "Analytical asymptotic extraction technique for the analysis of bend discontinuity," Progress In Electromagnetics Research, Vol. 33, 219-235, 2001.
doi:10.2528/PIER01012102