Vol. 11
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-12-30
Comparison of Methods for Modeling Uncertainties in a 2D Hyperthermia Problem
By
Progress In Electromagnetics Research B, Vol. 11, 189-204, 2009
Abstract
Uncertainties in biological tissue properties are weighed in the case of a hyperthermia problem. Statistic methods, experimental design and kriging technique, and stochastic methods, spectral and collocation approaches, are applied to analyze the impact of these uncertainties on the distribution of the electromagnetic power absorbed inside the body of a patient. The sensitivity and uncertainty analyses made with the different methods show that experimental designs are not suitable in this kind of problem and that the spectral stochastic method is the most efficient method only when using an adaptative algorithm.
Citation
Damien Voyer, Laurent Nicolas, Ronan Perrussel, and Francois Musy, "Comparison of Methods for Modeling Uncertainties in a 2D Hyperthermia Problem," Progress In Electromagnetics Research B, Vol. 11, 189-204, 2009.
doi:10.2528/PIERB08112104
References

1. Hurt, W. D., J. M. Ziriax, and P. A. Mason, "Variability in EMF permittivity values: Implications for SAR calculations," IEEE Trans. on Biomedical Engineering, Vol. 47, No. 3, 396-401, 2000.
doi:10.1109/10.827308

2. Garcia-Diaz, A. and D. Philips, Principles of Experimental Design and Analysis, Chapman & Hall, 1995.

3. Koehler, J. and A. Owen, Handbook of Statistics, 261-308, Chapter Computer experiments, Elsevier Science, 1996.

4. Ghanem, R. G. and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.

5. Xiu, D. and J. S. Hesthaven, "High-order collocation methods for differentialequations with random inputs," SIAM Journal on Scientific Computing, Vol. 27, No. 3, 1118-1139, 2005.
doi:10.1137/040615201

6. Gerstner, T. and M. Griebel, "Dimension-adaptive tensor-product quadrature," Computing, Vol. 71, No. 1, 65-87, Springer-Verlag, New York, Inc., 2003.
doi:10.1007/s00607-003-0015-5

7., IFAC, Institute For Applied Physics, http://niremf.ifac.cnr.it/tissprop/.
doi:10.1007/s00607-003-0015-5

8. Stoneman, M. R., M. Kosempa, W. D. Gregory, C. W. Gregory, J. J. Marx, W. Mikkelson, J. Tjoe, and V. Raicu, "Correction of electrode polarization contributions to the dielectric properties of normaland cancerous breast tissues at audio/radiofrequencies," Physical Medecine and Biology, Vol. 52, 6589-6604, 2007.
doi:10.1088/0031-9155/52/22/003

9. Renard, Y. and J. Pommier, "Getfem finite element library,", http://home.gna.org/getfem/.

10. OHagan, T. and M. Kennedy, "Gaussian emulator machine software,", http://www.tonyohagan.co.uk /academic/GEM/index.html.

11. Sobol, I. M., "Sensitivity estimates for non linear mathematical models," Mathematical Modelling and Computational Experiments, Vol. 1, 407-414, 1993.

12. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differentialequations," SIAM Journal on Scientific Computing, Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826

13. Zeng, Z. Y. and J. M. Jin, "An efficient calculation of scattering variation due to uncertain geometricaldeviation," Electromagnetics, Vol. 27, No. 7, 387-398, 2007.
doi:10.1080/02726340701572975

14. Klimke, A., "Sparse grid interpolation toolbox,", http://www.ians.uni-stuttgart.de/spinterp/.

15. Klimke, A., Uncertainty modeling using fuzzy arithmetic and sparse grids, Ph.D. thesis, Fakult¨at Mathematik und Physik der Universit¨at Stuttgart, 2006.