Vol. 5
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-12-12
Design and Realization of a Flat-Top Shaped-Beam Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 5, 159-166, 2008
Abstract
The design and realization of a ten-element shaped-beam antenna array are presented. A flat-top pattern in the main beam which allows a well-proportioned power distribution in desired zone is achieved by optimizing the amplitudes and phases of array elements using genetic algorithm. Being different from the most optimization in reported literatures, the proposed synthesis has taken the actual element patterns but identical and isotropic ones into account, which can reduce the error between computation and realization. Besides, both the optimized amplitudes and phases are set to be realizable. The array operating at 1.71-1.74 GHz is manufactured and measured. The measured radiation patterns of the proposed array show a flat-top main beam of about 40o and a peak side-lobe level of -20 dB, exhibiting a good agreement with the simulated results.
Citation
Hai-Jin Zhou, You-Huo Huang, Bao-Hua Sun, and Qi-Zhong Liu, "Design and Realization of a Flat-Top Shaped-Beam Antenna Array," Progress In Electromagnetics Research Letters, Vol. 5, 159-166, 2008.
doi:10.2528/PIERL08111911
References

1. Buckley, M. J., "Synthesis of shaped beam antenna patterns using implicitly constrained current elements," IEEE Trans. on Antennas and Propag., Vol. 44, 192-197, February 1996.
doi:10.1109/8.481647

2. Donelli, M., S. Caorsi, F. de Natale, D. Franceschini, and A. Massa, "Versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893

3. Lu, Y. Q., "Optimization of broadband top-load antenna using micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 793-801, 2006.
doi:10.1163/156939306776143370

4. Villegas, F. J., "Parallel genetic-algorithm optimization of shaped beam coverage areas using planar 2-D phased arrays," IEEE Trans. on Antennas and Propag., Vol. 55, 1745-1753, June 2007.
doi:10.1109/TAP.2007.898601

5. Lei, J., G. Fu, L. Yang, and D. M. Fu, "An omnidirectional printed dipole array antenna with shaped radiation pattern in the elevation plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1955-1966, 2006.
doi:10.1163/156939306779322639

6. Dessouky, M., H. Sharshar, and Y. Albagory, "Efficient sidelobe reduction technique for small-sized concentric circular arrays," Progress In Electromagnetics Research, Vol. 65, 187-200, 2006.
doi:10.2528/PIER06092503