Vol. 5
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-12-23
Broadband Aperture-Coupled Microstrip Antennas with Low Cross Polarization and Back Radiation
By
Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008
Abstract
The paper presents the performances of microstrip patch antennas excited by the aperture-coupling feed that is composed of a T-shaped microstrip feed line and an annular-ring slot. Because the annular-ring slot is designed at a full-wavelength resonant mode, a broad impedance bandwidth can be obtained by combing the resonant modes of the coupling slot and radiating patch; moreover, a low cross polarization is also observed, especially around the direction with maximum gain. For reducing the considerable back radiation induced by the resonant coupling aperture, additional slots are introduced and embedded along the perimeter of the annular-ring slot. Experimental results show that the reformed coupling slot can improve the front-to-back ratio of the aperture-coupled microstrip antenna by more than 5 dB. Simulation analyses are also performed to support the measured results.
Citation
Chai-Hui Lai, Tuan-Yung Han, and Tsair-Rong Chen, "Broadband Aperture-Coupled Microstrip Antennas with Low Cross Polarization and Back Radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805
References

1. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

2. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
doi:10.2528/PIER07060905

3. Abdelaziz, A. A., "Bandwidth enhansment of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
doi:10.2528/PIER06053001

4. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-FED microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

5. Liu, H. and X.-F. Hu, "Input impedance analysis of a microstrip annular-ring antenna with a thick substrate," Progress In Electromagnetics Research, Vol. 12, 177-204, 1996.

6. Huynh, T., K. F. Lee, and R. Q. Lee, "Crosspolarisation characteristics of rectangular patch antennas," Electronics Lett., Vol. 24, 463-464, 1998.
doi:10.1049/el:19880313

7. Chen, Z. N. and M. Y. W. Chia, "Experimental study on radiation performance of probe-fed suspended plate antennas," IEEE Trans. Antennas Propaga., Vol. 51, 1964-1971, 2003.
doi:10.1109/TAP.2003.814746

8. Li, P., H. W. Lai, K. M. Luk, and K. L. Lau, "A wideband patch antenna with cross-polarization suppression," IEEE Antennas Wireless Propaga. Lett., Vol. 3, 211-214, 2004.
doi:10.1109/LAWP.2004.834937

9. Chen, Z. N. and M. Y. W. Chia, "Broad-band suspended probefed plate antenna with low cross-polarization levels," IEEE Trans. Antennas Propaga., Vol. 51, 345-346, 2003.
doi:10.1109/TAP.2003.809062

10. Lai, H. W. and K. M. Luk, "Wideband patch antenna fed by printed meandering strip," Microwave and Opt. Technol. Lett., Vol. 50, 188-192, 2008.
doi:10.1002/mop.23047

11. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electronics Lett., Vol. 35, 355-357, 1999.
doi:10.1049/el:19990269

12. Chin, C. H. K., Q. Xue, H. Wong, and X. Y. Zhang, "Broadband patch antenna with low cross-polarisation," Electronics Lett., Vol. 43, 137-138, 2007.
doi:10.1049/el:20073567

13. Hsu, W. H. and K. L. Wong, "A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation," Microwave and Opt. Technol. Lett., Vol. 26, 169-171, 2000.
doi:10.1002/1098-2760(20000805)26:3<169::AID-MOP10>3.0.CO;2-X

14. Chen, Z. N. and M. Y. W. Chia, "A novel center-slot-fed suspended plate antenna," IEEE Trans. Antennas Propaga., Vol. 51, 1407-1410, 2003.
doi:10.1109/TAP.2003.814001

15. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propaga., Vol. 46, 1245-1251, 1998.
doi:10.1109/8.719966

16. Chiou, T. W. and K. L. Wong, "Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization," IEEE Trans. Antennas Propaga., Vol. 50, 399-401, 2002.
doi:10.1109/8.999635

17. Shin, H. S. and N. Kim, "Wideband and high-gain one-patch microstrip antenna coupled with H-shaped aperture," Electronics Lett., Vol. 38, 1072-1073, 2002.
doi:10.1049/el:20020735

18. Pozar, D. M. and S. D. Targonski, "Improved coupling for aperture coupled microstrip antennas," Electronics Lett., Vol. 27, 1129-1131, 1991.
doi:10.1049/el:19910705