Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-12-05
Three-Dimensional Reconstruction from Time-Domain Electromagnetic Waves
By
Progress In Electromagnetics Research M, Vol. 5, 137-152, 2008
Abstract
An iterative time-domain algorithm for reconstructing three-dimensional (3-D) objects is presented, using normalized microwave data. The incident waveform information is excluded from the cost functional by normalizing the observed and calculated fields in the frequency domain. The exciting pulse used in the reconstruction can be freely selected by considering the bandwidth of the received data. Two numerical examples are shown to demonstrate that the proposed method can rebuild an inhomogeneous object from noisy data where different waveforms in the observation and reconstruction are used. Two normalized data sets from synthetic observed data and calculated data for a known model are illustrated too.
Citation
Hui Zhou, Dongling Qiu, Jinsong Shen, and Guofa Li, "Three-Dimensional Reconstruction from Time-Domain Electromagnetic Waves," Progress In Electromagnetics Research M, Vol. 5, 137-152, 2008.
doi:10.2528/PIERM08110904
References

1. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

2. Zaeytijd, D., J. Franchois, A. C. Eyraud, and J. M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Trans. on Antennas Propagat., Vol. 55, No. 11, 3279-3292, 2007.
doi:10.1109/TAP.2007.908824

3. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 1, 137-141, 1994.
doi:10.1109/22.265541

4. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 203-214, 1997.
doi:10.1109/8.560338

5. Van Dongen, K. W. A. and W. M. D. Wright, "A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles," The Journal of the Acoustical Society of America, Vol. 121, 1538-1549, 2007.
doi:10.1121/1.2431333

6. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 1749-1756, 2000.
doi:10.1109/36.851974

7. Cui, T. J., Y. Qin, Y. Ye, J. Wu, G. L. Wang, and W. C. Chew, "Efficient low-frequency inversion of 3-D buried objects with large contrasts," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 1, 3-9, 2006.
doi:10.1109/TGRS.2005.860207

8. Pastorino, M., A. Massa, and S. Caorsi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm," IEEE Trans. Instrumentation and Measurement, Vol. 49, No. 3, 573-578, 2000.
doi:10.1109/19.850397

9. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 7, 1596-1607, 2001.
doi:10.1109/36.934091

10. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "An iterative multiresolution approach for microwave imaging applications," Microwave Opt. Technol. Lett., Vol. 32, No. 5, 352-356, 2002.
doi:10.1002/mop.10175

11. Joachimowicz, N., C. Pichot, and J. Hugonin, "Inverse scattering: an iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas Propagat., Vol. 39, No. 12, 1742-1752, 1991.
doi:10.1109/8.121595

12. Lin, J.-H. and W. C. Chew, "Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods," J. Opt. Soc. Am. A, Vol. 14, No. 11, 3037-3045, 1997.
doi:10.1364/JOSAA.14.003037

13. Abubakar, A., P. M. van den Berg, and B. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Trans. Electron. E83-C, 1864-1874, 2000.

14. Song, L. P. and Q. H. Liu, "Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation," Inverse Problems, Vol. 20, 171-194, 2004.
doi:10.1088/0266-5611/20/6/S11

15. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative method using time-domain data," IEEE Trans. Antennas Propagt., Vol. 41, No. 2, 177-184, 1993.
doi:10.1109/8.214608

16. Fhager, A., P. Hashemzadeh, and M. Persson, "Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm," IEEE Trans. on Biomedical Eng., Vol. 53, 1594-1604, 2006.
doi:10.1109/TBME.2006.878079

17. He, S., P. Fuks, and G. W. Larson, "Optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and dissipative slab," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1277-1282, 1996.
doi:10.1109/8.535386

18. Yu, W. H. and R. Mittra, "A nonlinear optimization technique for reconstructing dielectric scatterers with possible high contrasts," Microwave Opt. Technol. Lett., Vol. 14, No. 2, 268-271, 1997.
doi:10.1002/(SICI)1098-2760(19970405)14:5<268::AID-MOP4>3.0.CO;2-B

19. Gustafsson, M. and S. He, "An optimization approach to two-dimensional time domain electromagnetic inverse problems," Radio Sci., Vol. 35, 525-536, 2000.
doi:10.1029/1999RS900091

20. Takenaka, T., H. Zhou, and T. Tanaka, "Inverse scattering for a three-dimensional object in the time domain," J. Opt. Soc. Am. A, Vol. 20, No. 10, 1867-1874, 2003.
doi:10.1364/JOSAA.20.001867

21. Zhou, H., M. Sato, T. Takenaka, and G. Li, "Reconstruction from antenna transformed radar data using a time-domain reconstruction method," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 3, 689-696, 2007.
doi:10.1109/TGRS.2006.888140

22. Tanaka, T., N. Kuroki, and T. Takenaka, "Filtered forward-backward time-stepping method applied to reconstruction of dielectric cylinders," J. Electromagn. Waves Appl., Vol. 17, No. 2, 253-270, 2003.
doi:10.1163/156939303322235815

23. Zhou, H., D. L. Qiu, and T. Takenaka, "Reconstructing properties of subsurface from Ground-penetrating radar data," Progress In Electromagnetics Research Symposium 2007, 1009-1014, Beijing, China, March 26-30, 2007.

24. Daniels, D. J., Surface-penetrating Radar, UK Instit Elect Eng., 1996.

25. Broquetas, A., J. Romeu, J. M. Rius, A. R. Elias-Fuste, et al. "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 5, 836-844, 1991.
doi:10.1109/22.79111

26. Bloemenkamp, R. F., A. Abubakar, and P. M. van den Berg, "Inversion of experimental multi-frequency data using the contrast source inversion method," Inverse Problems, Vol. 17, 1611-1622, 2001.
doi:10.1088/0266-5611/17/6/305