Vol. 5
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-11-15
A Novel Circularly Polarized Antenna Based on an Artificial Ground Plane
By
Progress In Electromagnetics Research Letters, Vol. 5, 13-22, 2008
Abstract
The paper describes a novel low profile circularly polarized antenna. The antenna is a single dipole over a particular wire formed panel with high impedance properties. Although the principles of operation for the antenna are general, in this work they are specifically applied to the design and optimization of a FM broadcasting antenna. The distinguishing feature of the design is that it incorporates the following interesting concepts simultaneously: artificial high impedance surfaces or artificial magnetic conductors, materials showing refractive indexes of less than unity (n < 1), and polarizing structures. Another advantageous aspect of the design is the computational efficiency emerging from this fact that the structure is entirely wire made. This way the relevant numerical analysis and optimization can be efficiently carried out by NEC, a one-dimensional (1D) MoM-based EM analyzer.
Citation
Mehdi Hosseini, and Shahid Bashir, "A Novel Circularly Polarized Antenna Based on an Artificial Ground Plane," Progress In Electromagnetics Research Letters, Vol. 5, 13-22, 2008.
doi:10.2528/PIERL08102004
References

1. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

2. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

3. Li, Z. and Y. Rahmat-Samii, "PBG, PMC, and PEC ground planes: A case study of dipole antennas," IEEE AP-S Symp. Dig., Vol. 2, 674-677, July 2000.

4. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propagat., Vol. 52, No. 9, 2403-2414, Sep. 2004.
doi:10.1109/TAP.2004.834135

5. Hosseini, M., A. Pirhadi, and M. Hakkak, "Design of a nonuniform high impedance surface for a low profile antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1455-1464, 2006.
doi:10.1163/156939306779274291

6. Hosseini, M., A. Pirhadi, R. Fallahi, and M. Hakkak, "Bandwidth enhancement of a low profile antenna by applying non-uniformity to its high impedance ground plane," IEEE Mathematical Methods in Electromagnetic Theory, 202-204, Kharkiv, Ukraine, 2006.
doi:10.1109/MMET.2006.1689744

7. Poilasne, G., "Antennas on high-impedance ground planes: On the importance of the antenna isolation," Progress In Electromagnetics Research, Vol. 41, 237-255, 2003.

8. Shaban, H., H. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.

9. Hosseini, M. and S. Bashir, "Circularly polarized radiation by a dipole antenna over an innovative artificial ground plane," Loughborough Antennas and Propagation Conference, 453-456, Loughborough, UK, Mar. 2008.

10. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A novel TEM waveguide using uniplanar photonic-bandgap (UCPGB) structure," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2092-2098, Nov. 1999.
doi:10.1109/22.798004

11. Hosseini, M., A. Pirhadi, and M. Hakkak, "Compact angularly stable AMCs utilizing skewed cross-shaped FSSs," Microwave and Optical Technology Letters, Vol. 49, No. 4, 781-786, Apr. 2007.
doi:10.1002/mop.22280

12. Bin, L., W. Bian, and L. Chang-Hong, "A study on high gain circular waveguide array antenna using metamaterial structure," IEEE International Workshop on Antenna Technology, 249-252, Mar. 2006.
doi:10.1109/IWAT.2006.1609022

13. Ge, Z. C., W. X. Zhang, Z. G. Liu, and Y. Y. Gu, "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1272-1274, July 2006.
doi:10.1002/mop.21674

14. Yang, F. and Y. Rahmat-Samii, "A low profile single dipole antenna radiating circularly polarized waves," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 3083-3086, 2005.
doi:10.1109/TAP.2005.854536

15. Johnson, R. C. and H. Jasik, Antenna Engineering Handbook, 2nd edition, McGraw-Hill, NY, 1984.

16. Ludwig, A. C., "Wire grid modeling of surfaces," IEEE Trans. Antennas Propagat., Vol. 35, No. 9, 1045-1048, 1987.
doi:10.1109/TAP.1987.1144220

17. Hosseini, M. and R. Fallahi, "Design of a wideband panel sleeve dipole antenna for FM broadcasting applications," IEEE AP-S Symp., 4683-4686, Albuquerque, New Mexico, USA, July 2006.

18. Gharavi-Alkhansari, M., "A fast globally optimal algorithm for template matching using low-resolution pruning," IEEE Transactions on Image Processing, Vol. 10, No. 4, 526-533, Apr. 2001.
doi:10.1109/83.913587