1. Kuo, W.-M. L., R. Krithivasan, X. Li, Y. Lu, J. D. Cressler, H. Gustat, and B. Heinemann, "A low-power, X-band SiGe HBT low-noise amplifier for near-space radar applications," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 520-522, Sept. 2006.
doi:10.1109/LMWC.2006.880696
2. Park, Y., C.-H. Lee, J. D. Cressler, and J. Laskar, "Theoretical analysis of a low dispersion SiGe LNA for ultra-wideband applications," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 517-519, Sept. 2006.
doi:10.1109/LMWC.2006.880698
3. Bevilacqua, A. and A. M. Niknejad, "An ultrawideband CMOS low-noise Amplifier for 3.1–10.6-GHz wireless receivers," IEEE Journal of Solid-state Circuits, Vol. 39, No. 12, 2259-2268, Dec. 2004.
doi:10.1109/JSSC.2004.836338
4. Ismail, A. and A. A. Abidi, "A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE Journal of Solidstate," IEEE Journal of Solidstate Circuits, Vol. 39, No. 12, 2269-2277, Dec. 2004.
doi:10.1109/JSSC.2004.836344
5. Gunes, F., H. Torpi, and F. Gurgen, "A multidimensional signalnoise neural model for microwave transistor," IEE Proc. Circuits Devices System, Vol. 145, No. 2, 111-117, 1998.
doi:10.1049/ip-cds:19981712
6. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," accepted for publication in Int. J. RF Microwave CAE, July 2007.
7. Gunes, F., M. Gune¸s, and M. Fidan, "Performance characterization of a microwave transistor," IEE Proc. Circuits Devices System, Vol. 141, No. 5, Oct. 1994.
8. Gunes, F. and B. A¸cetiner, "Smith chart formulation of performance characterization for a microwave transistor," IEE Proc. Circuits Devices System, Vol. 145, No. 6, Dec. 1998.
doi:10.1049/ip-cds:19981712
9. Gunes, F. and C. Tepe, "Gain-bandwidth limitations for a microwave transistor," Int. J. RF Microwave CAE, Vol. 12, No. 6, 483-495, 2002.
doi:10.1002/mmce.10049
10. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806
11. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917
12. Ayestaran, R. G., F. Las-Heras, and J. A. Martınez, "Non uniform-antenna array synthesis using neural networks," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1001-1011, 2007.
13. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neurofuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208
14. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2123-2135, 2006.
doi:10.1163/156939306779322549
15. Xu, Y., Y. Guo, R. Xu, and Y. Wu, "Modeling of SIC MESFETs by using support vector machine regression," J. of Electromagn. Waves and Appl., Vol. 21, No. 11, 1489-1498, 2007.
16. Xu, Y., Y. Guo, R. Xu, L. Xia, and Y. Wu, "An support vector regression based nonlinear modeling method for SIC MESFET," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102
17. Tokan, N. T. and F. Gune, "Support vector characterization of the microstrip antennas based on measurements," Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008.
doi:10.2528/PIERB08013006
18. Yang, Z. Q., T. Yang, Y. Liu, and S. H. Han, "MIM capacitor modeling by support vector regression," J. of Electromagn. Waves and Appl., Vol. 22, No. 1, 61-67, 2008.
doi:10.1163/156939308783122788
19. Gunes, F. and S. Demirel, "Gain gradients applied to optimization of distributed parameter matching circuits for microwave transistor subject to its potential performance," accepted for publication in Int. J. RF Microwave CAE, Vol. 18, No. 2, 99-111, Mar. 2008.
doi:10.1002/mmce.20254
20. Gunes, F. and Y. Cengiz, "Optimization of a microwave amplifier using neural performance data sheets with genetic algorithms," Lecture Notes in Computer Science, 630-637, 2003.
21. Cengiz, Y., H. Goksu, and F. Gunes, "Design of a broadband microwave amplifier using neural performance data sheets and very fast simulated reannealing," Lecture Notes in Computer Science, Vol. 6, No. 2, 815-820, 2006.
doi:10.1007/11760191_119
22. Demirel, S., F. Gunes, and U. Ozkaya, "Particle swarm intelligence applied to design microwave amplifier for the maximum gain constrained by the minimum noise over the available bandwidth," Submitted to Progress In Electromagnetics Research.
23. Aksen, A., "Design of lossless two-ports with mixed lumped and distributed elements for broadband matching,", Ph.D. dissertation, Electrotechnic Faculty, Ruhr-University, Bochum, Germany, 1994.
24. Bilgin, C., "Design of the optimum terminations of a microwave transistor using circuit functions,", MS thesis submitted to Science Institute of the Yldz Technical University, Istanbul, Turkiye, 2004.