Vol. 85
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-18
On the Basis Functions with Traveling Wave Phase Factor for Efficient Analysis of Scattering from Electrically Large Targets
By
Progress In Electromagnetics Research, Vol. 85, 83-114, 2008
Abstract
A basis function with the traveling wave phase factor, called as the phase extracted (PE) basis functions in this paper, has been applied for efficient solution of scattering from 3 dimensional (3- D) electrically large objects. In this paper, a rigorous derivation is given as a physical insight of this basis function. Defined on large patches and containing propagating wave phase dependence, this kind of bases exhibits very strong directivity, leading to a highly sparsed impedance matrix. Based on such observation, a matrix sparsification technique and an impedance prediction technique have been developed in this paper. The total memory requirement and computational time could be reduced significantly with methods proposed in this paper. The basic requirements of basis functions, i.e., current continuity and absence of charge accumulation are demonstrated, and the excellent behavior of PE basis functions in wideband applications has been summarized briefly. Several numerical examples have been given to show its good accuracy and high efficiency in solving scattering from electrically large complex objects.
Citation
Zai-Ping Nie, Su Yan, Shiquan He, and Jun Hu, "On the Basis Functions with Traveling Wave Phase Factor for Efficient Analysis of Scattering from Electrically Large Targets," Progress In Electromagnetics Research, Vol. 85, 83-114, 2008.
doi:10.2528/PIER08081905
References

1. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

2. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

3. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901

4. Yuan, H. W., S. X. Gong, X. Wang, and W. T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302

5. Varmazyar, S. H. and M. N. Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution ," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

6. Varmazyar, S. H. and M. N. Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

7. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

8. Engheta, N., W. D. Murphy, V. Rokhlin, et al. "The Fast Multipole Method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, 1992.
doi:10.1109/8.144597

9. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEE Proceedings-H, Vol. 140, No. 6, 455-460, 1993.

10. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave and Optical Technology Letters, Vol. 7, No. 16, 760-765, 1994.
doi:10.1002/mop.4650071612

11. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Ch. 3, Artech House, 2001.

12. Rui, P. L., R. S. Chen, Z. W. Liu, and Y. N. Gan, "Schwarz-Krylov subspace method for MLFMM analysis of electromagnetic wave scattering problems," Progress In Electromagnetics Research, Vol. 82, 51-63, 2008.
doi:10.2528/PIER08013003

13. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503

14. Wan, J. X., T. M. Xiang, and C. H. Liang, "The fast multipole algorithm for analysis of large-scale microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 49, 239-255, 2004.
doi:10.2528/PIER04042201

15. Pan, Y. C. and W. C. Chew, "A fast multipole metho for embedded structure in a stratified medium," Progress In Electromagnetics Research, Vol. 44, 1-38, 2004.
doi:10.2528/PIER03050602

16. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling," IEEE Antennas and Propagation SocietyInternational Symposium, Vol. 4, 618-621, June 2002.

17. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279

18. Altman, Z. and R. Mittra, "Combining an extrapolation technique with the method of moments for solving large scattering problems involving bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 44, 548-553, Apr. 1996.
doi:10.1109/8.489307

19. Altman, Z. and R. Mittra, "A technique for extrapolating numerically rigorous solutions of electromagnetic scattering problems to higher frequencies and their scaling properties," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 744-751, Apr. 1999.
doi:10.1109/8.768815

20. Kwon, D. H., R. J. Burkholder, and P. H. Pathak, "Efficient method of moments formulation for large pec scattering problems using Asymptotic Phasefront Extraction (APE)," IEEE Trans. Antennas Propagat., Vol. 49, No. 4, 583-591, Apr. 2001.
doi:10.1109/8.923318

21. Aberegg, K. R. and A. F. Peterson, "Application of the integral equation-asymptotic phase method to two-dimensional scattering ," IEEE Trans. Antennas Propagat., Vol. 43, 534-537, May 1995.
doi:10.1109/8.384199

22. Kowalski, M. E., B. Singh, L. C. Kempel, K. D. Trott, and J.-M. Jin, "Application of the integral equation asymptotic phase (IE-AP) method to three-dimensional scattering ," J. of Electromagn. Waves and Appl., Vol. 15, 885-900, July 2001.

23. Taboada, J. M., F. Obelleiro, J. L. Rodriguez, I. Garcia-Tunon, and L. Landesa, "Incorporation of linear-phase progression in RWG basis functions," Microwave and Optical TechnologyL etters, Vol. 44, No. 2, 106-112, January 2005.
doi:10.1002/mop.20560

24. Abboud, T., J. C. Nedelec, and B. Zhou, "Improvement of the integral equation method for high frequency problems," Third International Conference on Mathematical Aspects of Wave Propagation, SIAM, 178-187, 1995.

25. Aberegg, K. R., "Electromagnetic scattering using the integral equation - asymptotic phase method,", Ph.D. dissertation, Georgia Institute of Technology, 1995.

26. Shen, X., A. W. Davis, K. R. Aberegg, and A. F. Peterson, "Highly parallel implementation of the 3D integral equation asymptotic phase method for electromagnetic scattering," Applied Computational Electromagnetics Society(A CES) Journal, Vol. 13, 107-115, July 1998.

27. Darrigrand, E., "Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation," J. Computational Physics, Vol. 181, 126-154, 2002.
doi:10.1006/jcph.2002.7091

28. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

29. Wilkes, D. L. and C. C. Cha, "Method of moments solution with parametric curved triangular patches," Antennas and Propagation SocietyInternational Symposium, Vol. 3, 1512-1515, June 1991.

30. Zhu, N. Y. and F. M. Landstorfer, "Application of curved parametric triangular and quadrilateral edge elements in the moment solution of the EFIE," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 9, 319-321, Sept. 1993.
doi:10.1109/75.244865

31. Brown, W. J. and D. R. Wilton, "Singular basis functions and curvilinear triangles in the solution of the electric field integral equation," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 347-353, Feb. 1999.
doi:10.1109/8.761075

32. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-810, Aug. 1995.
doi:10.1109/8.402199

33. Yan, S. and Z. Nie, "A novel mixed basis function for method of moment," Proceedings of Asia-Pacific Microwave Conference 2005, Vol. 3, Suzhou, China, Dec. 4–7, 2005.

34. Ergul, O. and L. Gurel, "Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1103-1110, Apr. 2007.
doi:10.1109/TAP.2007.893393