Vol. 84
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-13
Photonic Band Gaps in One-Dimensional Metallic Star Waveguide Structure
By
Progress In Electromagnetics Research, Vol. 84, 349-362, 2008
Abstract
In the present communication, we investigate theoretically and study a different type of photonic structure called metallic star waveguide (SWG) structure. The proposed structure, having single homogenous metallic material, is composed of a backbone (or substrate) waveguide along which finite side branches grafted periodically. In order to obtain the dispersion relation and hence the photonic band gaps (PBGs) of the SWG structure the Interface Response Theory (IRT) have been applied. Such types of structures show the band gaps without the contrast in the refractive index of the constituent materials. We also show that the range of forbidden bands can be tuned to different value by varying the number grafted branches of the SWG structures, without changing the other parameters. Moreover, the effects of variation of absorption of metals and plasma frequency on the band gaps of the proposed structures have been investigated.
Citation
Sanjeev Srivastava, and Sant Ojha, "Photonic Band Gaps in One-Dimensional Metallic Star Waveguide Structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
doi:10.2528/PIER08080501
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Xu, K.-Y., X. Zheng, C.-L. Li, and W.-L. She, "Design of omnidirectional and multiple channeled filters using onedimensional photonic crystals containing a defect layer with a negative refractive index," Phys. Rev. E, Vol. 71, 1-5, 2005.

3. Huang, C. H., W. F. Hsieh, and S.-C. Cheng, "Coupling theory of asymmetric photonic crystal waveguide," PIERS Online, Vol. 4, 506-510, 2008.
doi:10.2529/PIERS071215034736

4. Pendry, J. B., "Photonic band structures," J. Mod. Opt., Vol. 41, 209-229, 1994.
doi:10.1080/09500349414550281

5. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystal structures with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

6. Dekkicha, L. and R. A. Naoum, "A new 90◦-bend in a two-dimensional photonic crystal waveguide using topology optimization," Progress In Electromagnetics Research, Vol. 56, 183-193, 2006.
doi:10.2528/PIER05011601

7. Moghimi, M. J., H. G. Fard, and A. Rostami, "Multi wavelengths optical switching and tunable filters using dynamic superimposed photorefractive Bragg grating," Progress In Electromagnetics Research C, Vol. 3, 129-142, 2008.

8. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

9. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total refelction frequency range in one-dimensional photonic crystals by using heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.
doi:10.1063/1.1484547

10. Dobrzynski, L., A. Akjouj, A. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Phys. Rev. B, Vol. 57, 9388-9391, 1998.
doi:10.1103/PhysRevB.57.R9388

11. Vasseur, J. O., P. A. Deymier, L. Dobrzynski, B. Djafari-Rouhani, and A. Akjouj, "Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structure," Phys. Rev. B, Vol. 55, 10434-10442, 1997.
doi:10.1103/PhysRevB.55.10434

12. Mir, A., A. Akjouj, J. O. Vasseur, B. Djafari-Rouhani, N. Fettouhi, E. Boudouti, L. Dobrzynski, and J. Zemmouri, "Observation of large photonic band gaps and defect modes in onedimensional networked waveguides," J. Phys. Condens. Matter, Vol. 15, 1593-1598, 2003.
doi:10.1088/0953-8984/15/10/308

13. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared," Applied Optics, Vol. 22, 1099-1119, 1983.

14. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.

15. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66105-110, 66105-110, 2006.

16. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
doi:10.2528/PIER07111203