1. Moheb, H., J. Shaker, and L. Shafai, "Numerical and experimental investigation of cavity-backed arbitrary antennas," Can. J. Physics, Vol. 74, No. 3-4, 122-131, 1996.
2. Hussein, K. F. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101
3. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas & Propag., Vol. 39, No. 1, 97-104, Jan. 1991.
doi:10.1109/8.64442
4. Omiya, M., T. Hikage, N. Ohno, K. Horiguchi, and K. Itoh, "Design of cavity-backed slot antennas using the finite-difference time-domain technique," IEEE Trans. Antennas Propagat., Vol. 46, 1853-1858, Dec. 1998.
doi:10.1109/8.743823
5. Hikage, T., M. Omiya, and K. Itoh, "Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique," IEEE Trans. Antennas Propag., Vol. 49, 1712-1717, Dec. 2001.
doi:10.1109/8.982450
6. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "Coupling modeling and reduction techniques of cavity-backed slot antennas: FDTD versus measurements," IEEE Trans. Antennas Propag., Vol. 43, 261-272, Aug. 2001.
7. Shi, S., K. Hirasawa, and Z. Ning, "Circularly polarized rectangularly bent slot antennas backed by a rectangular cavity," IEEE Trans. Antennas Propag., Vol. 49, 1517-1524, Nov. 2001.
8. Taflove, A., Computational Electromagnetics, Artech House, 1995.
9. Luebbers, R. J. and H. S. Langdon, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations," IEEE Trans. Antennas Propagat., Vol. 44, 1000-1005, July 1996.
10. Lubbers, R., K. Kunz, M. Schneider, and F. Hunsberger, "A finite difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 34, 429-433, Apr. 1991.
doi:10.1109/8.81453
11. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, May 1966.
12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, MA, 2005.
13. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the timedependent Maxwell's equations," IEEE Trans. Microwave Theory Tech., Vol. 23, 623-630, Aug. 1975.
doi:10.1109/TMTT.1975.1128640
14. Tretyakov, O. A. and F. Erden, "Temporal cavity oscillations caused by a wide-band waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222
15. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502
16. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803
17. Xu, L., J. Tian, and X.-W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503
18. Geyi, W., "Time-domain theory of metal cavity resonator," Progress In Electromagnetics Research, Vol. 78, 219-253, 2008.
doi:10.2528/PIER07090605
19. Wang, F. J. and J.-S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801
20. Mahajan, M., S. K. Khah, and T. Chakravarty, "Extended cavity model analysis of stacked circular disc," Progress In Electromagnetics Research, Vol. 65, 287-308, 2006.
doi:10.2528/PIER06101301
21. Bopp III, C. L. and C. M. Butler, "Analysis of transmission of a signal through a complex cylindrical/coaxial cavity by transmission line methods," rogress In Electromagnetics Research, Vol. 56, 33-51, 2006.
doi:10.2528/PIER05041403
22. Das, S., A. Chakrabarty, and A. Chakraborty, "Characteristics of an offset longitudinal/transverse slot coupled crossed waveguide junction using multiple cavity modeling technique considering the TE00 mode at the slot aperture," Progress In Electromagnetics Research, Vol. 67, 297-316, 2007.
doi:10.2528/PIER06092701
23. Wang, C.-F., Y. Xu, and Y.-B. Gan, "3-dimensional implementation of the field iterative method for cavity modeling," Progress In Electromagnetics Research, Vol. 47, 27-47, 2004.
doi:10.2528/PIER03081401