Vol. 4
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-08-20
A Novel Design Approach for Dual-Band Electromagnetic Band-Gap Structure
By
Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008
Abstract
A novel compact dual-band electromagnetic band-gap (EBG) structure is proposed in this paper. The major contribution to this dual-band design is using cascaded mushroom-like units which operate at different frequencies. The position of via is moved off the center of the metal patch to get a lower resonant frequency and the effects of the radius of via are considered at the same time. The method of suspended microstrip is utilized to measure the band-gap characteristics of the EBG structures. Several dual-band EBG structures are designed and compared. Results show that this novel cascaded structure offers additional flexibility in controlling the frequencies of the stopband over a wide range. The cascaded dualband EBG structure has potential application to dual-band antenna and circuit.
Citation
Li-Jing Zhang, Chang-Hong Liang, Le Liang, and Liang Chen, "A Novel Design Approach for Dual-Band Electromagnetic Band-Gap Structure," Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-imp edance electromagnetic surfaces with a forbid-den frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

2. Yan, D.-B., Q. Gao, Y.-Q. Fu, G.-H. Zhang, and N.-C. Yuan, "Novel improvement of broad band AMC structure," Chinese Journal of Radio Science, Vol. 20, 586-589, 2005.

3. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structure ," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

4. Fu, Y. and N. Yuan, "Accurate analysis of electromagnetic bandgap materials using moment methods," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 2005.
doi:10.1163/1569393053305026

5. Li, B., L. LI, and C.-H. Liang, "The rectangular waveguide board wall slot array antenna with EBG structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 2005.

6. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "nhancemen t of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 2006.
doi:10.1163/156939306776930330

7. Pirhadi, A., "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer ," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

8. Guida, G., "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

9. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-D dielectric PBG material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
doi:10.2528/PIER02010804

10. Tarot, A.-C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic PBG structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806

11. Yao, Y., X. Wang, and Z. H. Feng, A novel dual-band compact electromagnetic band-gap (EBG) structure and its application in multi-antenna, IEEE Antennas and Propagation Society International Symposium, 2006.

12. Bao, X. L. and M. J. Ammann, "Design of compact multiband EBG structure," European Conference on Antennas and Propagation, 2007.

13. Chen, G. Y., J. S. Sun, and K. L. Wu, "Dual-band 1-D PBG," IEEE TENCON 2007, 2007.

14. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure ," Microwave Opt. Technol. Lett., Vol. 50, 2167-2170, 2008.
doi:10.1002/mop.23598

15. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 53, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

16. Yang, N., Z.-N. Chen, Y.-Y. Wang, and M. Y. W. Chia, "A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design ," Microwave Opt. Technol. Lett., Vol. 37, 62-64, 2003.
doi:10.1002/mop.10825

17. Horii, Y., "A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate," 2005 Asian Pacific Microwave Conference, 2005.

18. Lee, D. H., J. H. Kim, J. H. Jang, and W. S. Park, "Dual-frequency dual-polarization antenna of high isolation with embedded mushroom-like EBG cells," Microwave Opt. Technol. Lett., Vol. 49, 1764-1768, 2007.
doi:10.1002/mop.22513

19. Chen, X.-Q., X.-W. Shi, Y.-C. Guo, and M.-X. Xiao, "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnetics Research, Vol. 83, 1-11, 2008.
doi:10.2528/PIER08041503

20. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens ," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
doi:10.2528/PIER08041404

21. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

22. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

23. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer ," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

24. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meanderloop resonator and CSRR DGS ," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

25. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects ," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002

26. Yuan, H.-W., S.-X. Gong, X. Wang, and W.-T.Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302

27. Oraizi, H. and M. S. Esfahlan, "Miniaturization of Wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
doi:10.2528/PIERL08060701

28. Abdalla, M. A. and Z. Hu, "On the study of left-handed anar waveguide coupler on FerriteRNsubstrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
doi:10.2528/PIERL07111808

29. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

30. Boutayeb, H., A.-C. Tarot, and K. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gap structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
doi:10.2528/PIER06100504