Vol. 84
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-13
Application of Artificial Ground Planes in Dual-Band Orthogonally-Polarized Low-Profile High-Gain Planar Antenna Design
By
Progress In Electromagnetics Research, Vol. 84, 407-436, 2008
Abstract
Application of artificial ground planes in design of compact cavity-resonance dual-band high-gain antennas is presented. The artificial ground plane consists of periodic strip grating on grounded dielectric slab. A code based on method of moment (MoM) is developed to analyze and design such artificial ground planes. The reflection parameters obtained using the MoM code are employed to characterize the surface impedance of the artificial ground plane for different incident angles and both TE and TM polarizations. Then, this impedance surface is used in transverse equivalent network (TEN) model of the cavity-resonance antenna with high-permittivity dielectric superstrate. Using TEN model radiation properties of such antennas are analyzed. Finally, the antenna with the compact size is designed to demonstrate the maximum directivity. An interesting characteristic of this antennas is that when the antenna ground plane acts as an artificial magnetic conductor the height of the antenna is almost reduced by a factor of two, while its directivity is increased by about 1 dB compared to the conventional antennas of this class having PEC ground plane.
Citation
Alireza Foroozesh, Malcolm Ng Mou Kehn, and Lotfollah Shafai, "Application of Artificial Ground Planes in Dual-Band Orthogonally-Polarized Low-Profile High-Gain Planar Antenna Design," Progress In Electromagnetics Research, Vol. 84, 407-436, 2008.
doi:10.2528/PIER08062804
References

1. Kildal, P.-S., A. A. Kishk, and S. Maci, "Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surfaces," IEEE Trans. on Antennas and Propagat., Vol. 53, January 2005.
doi:10.1109/TAP.2004.841530

2. Feresidis, A., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propagat., Vol. 53, 209-215, January 2005.
doi:10.1109/TAP.2004.840528

3. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antennas based on metamaterial ground planes," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 1, 1-6, February 2006.
doi:10.1049/ip-map:20050090

4. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground planes," Proc. IEEE Int. Symp., 15-18, Albuquerque, NM, July 9-14 2006.

5. Foroozesh, A. and L. Shafai, "Size reduction in the high gain antennas with dielectric superstrate using artificial magnetic conductors," Proc. ANTEM/URSI Int’l Symp., 523-526, Montreal, QC, July 17-19 2006.

6. Foroozesh, A. and L. Shafai, "Size reduction of a microstrip antenna with dielectric superstrate using meta-materials: Artificial magnetic conductors versus magneto-dielectrics," Proc. IEEE Int. Symp., 11-14, Albuquerque, NM, July 9-14 2006.

7. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

8. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

9. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 33, 976-987, September 1985.
doi:10.1109/TAP.1985.1143709

10. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 32, 807-816, August 1984.
doi:10.1109/TAP.1984.1143433

11. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. on Antennas and Propagat., Vol. 35, 860-863, July 1987.
doi:10.1109/TAP.1987.1144186

12. Wu, X. H., A. A. Kishk, and A W. Glisson, "A transmission line method to compute the far-field radiation of arbitrarily directed Hertzian dipoles in multilayer dielectric structure: Theory and applications," IEEE Trans. on Antennas and Propagat., Vol. 54, 2731-2741, October 2006.
doi:10.1109/TAP.2006.882164

13. Zhao, T., D. R. Jackson, J. T. Williams, H. Y. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas. Part I: Metal patch design," IEEE Trans. on Antennas and Propagat., Vol. 53, 3505-3514, November 2005.
doi:10.1109/TAP.2005.858579

14. Zhao, T., D. R. Jackson, and J. T. Williams, "2-D periodic leakywave antennas. Part II: Slot design," IEEE Trans. on Antennas and Propagat., Vol. 53, 3515-3524, November 2005.
doi:10.1109/TAP.2005.858580

15. Zhao, T., D. R. Jackson, J. T. Williams, and A. A. Oliner, "General formulas for 2-D leaky-wave antennas," IEEE Trans. on Antennas and Propagat., Vol. 53, 3525-3533, November 2005.
doi:10.1109/TAP.2005.856315

16. Jackson, D. R. and A. A. Oliner, "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. on Antennas and Propagat., Vol. 36, 905-910, July 1988.
doi:10.1109/8.7194

17. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501

18. Semichaevsky, A. and A. Akuyrtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001

19. Uchida, K., T. Noda, and T. Matsunaga, "Spectral domain analysis of electromagnetic wave scattering by an infinite metallic grating," IEEE Trans. on Antennas and Propagat., Vol. 35, 46-52, October 1987.
doi:10.1109/TAP.1987.1143973

20. Lee, C.-W. and H. Son, "Analysis of electromagnetic scattering by periodic strip grating on a grounded dielectric/magnetic slab for arbitrary plane wave incidence case," IEEE Trans. on Antennas and Propagat., Vol. 47, 1386-1392, September 1999.

21. Khalaj-Amirhosseini, M., "Scattering of inhomegenous two-dimensional periodic dielectric gratings," Progress In Electromagnetics Research, Vol. 60, 165-177, 2006.
doi:10.2528/PIER05112601

22. Watanabe, K. and K. Yasumoto, "Two-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902

23. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of Maxwell’s equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601

24. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of MUR’s absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

25. Matsushima, A., Y. Momoka, M. Ohtsu, and Y. Okuno, "Efficient numerical approach to electromagnetic scattering from three-dimensional periodic array of dielectric spheres using sequantial accumulation," Progress In Electromagnetics Research, Vol. 69, 305-322, 2007.
doi:10.2528/PIER06123002

26. Dalili Oskouei, H., K. Forooraghi, and M. Hakkak, "Guided and leaky wave characteristics of periodic defected ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701

27. Edalati, A., H. Boutayeb, and T. Denidni, "Band structure analysis of reconfigurable metallic crystals: Effect of active element," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2421-2430, 2007.
doi:10.1163/156939307783134245

28. Butler, C. M., "General solutions of the narrow strip (and slot) integral equations," IEEE Trans. on Antennas and Propagat., Vol. 35, 1085-1090, January 1985.
doi:10.1109/TAP.1985.1143500

29. Sipus, Z., P.-S. Kildal, R. Leijon, and M. Johansson, "An algorithm for calculating Green’s functions of planar, circular cylindrical and spherical multilayer substrates," Applied Computational Electromagnetics Society (ACES) J., Vol. 13, No. 3, 243-254, November 1998.

30. Ng Mou Kehn, M., M. Nannetti, A. Cucini, S. Maci, and P.-S. Kildal, "Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide," IEEE Trans. on Antennas and Propagat., Vol. 54, 2275-2282, August 2006.
doi:10.1109/TAP.2006.879198

31. Foroozesh, A. and L. Shafai, "Investigation of reflection properties of reactive impedance substrates," Proc. CCECE Int. Symp., 1881-1884, Saskatoon, SA, May 2005.

32. Munk, B., Frequency Selective Surface: Theory and Design, John Wiley & Sons, Inc., 2000.

33. Foroozesh, A. and L. Shafai, "Effects of the excitation source position on the radiation characteristics of the antennas with a cover layer: A few case studies," Proc. IEEE Int. Symp., 1507-1510, Albuquerque, NM, July 9-14 2006.