Vol. 8
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-07-14
Electromagnetic Scattering of a Field Known on a Curved Interface Using Conformal Gaussian Beams
By
Progress In Electromagnetics Research B, Vol. 8, 195-212, 2008
Abstract
Asymptotic techniques have been successfully applied to compute electromagnetic wave radiation in various high-frequency engineering domains. Recent approaches based on Gaussian beams for tracking fields may overcome some problems inherent to the ray methods such as caustics. The efficiency of these methods is based on the ability to expand surface fields into a superposition of Gaussian beams. However, some difficulties may arise when the surface is curved. In this paper, we propose a new efficient way to expand fields on a curved surface into Gaussian beams. For this purpose, a new beam formulation called Conformal Gaussian Beam (CGB) is used. The CGBs have been developed to overcome the limitation of the expansion into paraxial Gaussian Beams. The analytical Plane-Wave Spectrum and far-field of a CGB are derived and compared with numerical calculations. A brief parameter analysis of the CGBs is realised.
Citation
Julien Hillairet, Jérôme Sokoloff, and Sylvain Bolioli, "Electromagnetic Scattering of a Field Known on a Curved Interface Using Conformal Gaussian Beams," Progress In Electromagnetics Research B, Vol. 8, 195-212, 2008.
doi:10.2528/PIERB08062603
References

1. Pathak, P. H., "High-frequency techniques for antenna analysis," Proc. of the IEEE, Vol. 80, No. 1, 44-65, Jan. 1992.
doi:10.1109/5.119566

2. Felsen, L. B. and L. Sevgi, "Electromagnetic engineering in the 21st century: Challenges and perspectives," Turk J. Elec. Engin., Vol. 10, No. 2, 131-145, 2002.

3. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering ," Proc. of the IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

4. Felsen, L. B., "Real spectra, complex spectra, compact spectra ," J. Opt. Soc. Am. A, Vol. 3, No. 4, 486-496, Apr. 1986.
doi:10.1364/JOSAA.3.000486

5. Chou, H.-T. and P. H. Pathak, "Uniform asymptotic solution for electromagnetic reflexion and diffraction of an arbitrary Gaussian beam by a smooth surface with an edge," Radio Science, Vol. 32, No. 4, 1319-1336, 1997.
doi:10.1029/97RS00713

6. Chou, H.-T. and P. H. Pathak, "Use of Gaussian ray basis functions in ray tracing methods for applications to high frequency wave propagation problems," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 147, No. 2, 77-81, Apr. 2000.
doi:10.1049/ip-map:20000097

7. Chou, H.-T., P. H. Pathak, and R. J. Burkholder, "Novel Gaussian beam method for the rapid analysis of large reflector antennas," IEEE Trans. Antenna Propagat., Vol. 49, No. 6, 880-893, June 2001.
doi:10.1109/8.931145

8. Lugara, D., A. Boag, and C. Letrou, "Gaussian beam tracking through a curved interface: Comparison with a method of moments," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 150, No. 1, 49-55, Feb. 2003.
doi:10.1049/ip-map:20030434

9. Tahri, R., D. Fournier, S. Collonge, G. Zaharia, and G. El Zein, "Efficient and fast Gaussian beam-tracking approach for indoorpropagation modeling ," Microwave and Optical Technology Letters, Vol. 45, No. 5, 378-381, 2005.
doi:10.1002/mop.20829

10. Heyman, E. and L. B. Felsen, "Gaussian beam and pulsed-beam dynamics: Complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A, Vol. 18, No. 7, 1588-1610, July 2001.
doi:10.1364/JOSAA.18.001588

11. Lugara, D. and C. Letrou, "Alternative to Gabor's representation of plane aperture radiation," Electronics Letters, Vol. 34, No. 24, 2286-2287, Nov. 1998.
doi:10.1049/el:19981599

12. Sokoloff, J., S. Bolioli, and P.-F. Combes, "Gaussian beam expansion for radiation analysis of metallic reflectors illuminated under oblique incidence," IEEE Trans. on Magnetics, Vol. 38, No. 2, 697-700, Mar. 2002.
doi:10.1109/20.996181

13. Chabory, A., J. Sokoloff, S. Bolioli, and P.-F. Combes, "Computation of electromagnetic scattering by multilayer dielectric objects using Gaussian beam based techniques," C. R. Physique, Vol. 6, 654-662, 2005.
doi:10.1016/j.crhy.2005.06.011

14. Bolioli, S., J. Sokoloff, and A. Chabory, "Multilayer radome computation — Comparison between Gaussian beam formalism and plane wave spectrum — Application to airbus a380," ICEAA, Turino (Italy), Sept. 2005.

15. Letrou, C., A. Boag, and E. Heyman, "Gaussian beams representation based on periodic frames for radiation from cylindrical apertures," IEEE/AP-S and URSI Meeting, Monterey (CA), USA,, 1979-1982, June 2004.

16. Chabory, A., S. Bolioli, and J. Sokoloff, "Novel Gabor-based Gaussian beam expansion for curved aperture radiation in dimension two," Progress In Electromagnetics Research, Vol. 58, 171-185, 2006.
doi:10.2528/PIER05090702

17. Chabory, A., J. Sokoloff, and S. Bolioli, "Physically based expansion on conformal Gaussian beams for the radiation of curved aperture in dimension 2," Microwaves, Antennas and Propagation, IET, Vol. 2, No. 2, 152-157, 2008.
doi:10.1049/iet-map:20060168

18. Tai, C.-T., "Direct integration of field equations," Progress In Electromagnetics Research, Vol. 28, 339-359, 2000.
doi:10.2528/PIER99101401

19. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.

20. Nagamune, A. and P. H. Pathak, "An efficient plane wave spectral analysis to predict the focal region fields of parabolic reflector antennas for small and wide angle scanning ," IEEE Trans. Antenna Propagat., Vol. 38, No. 11, 1746-1756, Nov. 1990.
doi:10.1109/8.102735

21. Ansbro, A. P. and J. M. Arnold, "Spectral asymptotics for general curved reflecting surface," J. Opt. Soc. Am. A, Vol. 10, No. 4, 590-599, Apr. 1993.
doi:10.1364/JOSAA.10.000590

22. Delabaere, E. and C. Howls, "Global asymptotics for multiple integrals with boundaries," Duke Math. J., Vol. 112, No. 2, 199-264, 2002.
doi:10.1215/S0012-9074-02-11221-6