Vol. 3
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-30
Growth and Characterization of Sio2 Films Deposited by Flame Hydrolysis Deposition System for Photonic Device Application
By
Progress In Electromagnetics Research M, Vol. 3, 165-175, 2008
Abstract
There are various techniques for the deposition of SiO2 films on silicon. Flame Hydrolysis Deposition (FHD) techniques is the most economical technique for the deposition of SiO2 films. In this technique the SiO2 films are deposited by hydrolysis of SiCl4 in a high temperature H2-O2 flame. In the present study we present the growth of SiO2 films by indigenously developed FHD system and organic compound Tetraethoxyorthosiliate/Tetraethoxysilane TEOS as source of silicon. The films deposited by the FHD system are porous and need annealing at higher temperatures for the densification. We present here for the first time direct dense glassy transparent SiO2 films deposited by our FHD system. The optical properties of the deposited films were studied by ellipsometery. FTIR spectroscopy was carried out to study the various characteristic peaks of SiO2 bonds. The peaks corresponding to Si-O-Si stretching, bending and rocking modes are observed at 1090 cm-1, 812 cm-1 and 463 cm-1 respectively. The absence of peaks corresponding to the OH bond in the deposited film reveals that the deposited films are most suitable for the photonic devices application. The surface analysis was carried out using SEM. The EDAX of the deposited film confirms the composition of the Si and O in the deposited film.
Citation
Jaspal Bange, Lalit Patil, and Dinesh Gautam, "Growth and Characterization of Sio2 Films Deposited by Flame Hydrolysis Deposition System for Photonic Device Application," Progress In Electromagnetics Research M, Vol. 3, 165-175, 2008.
doi:10.2528/PIERM08060401
References

1. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on ferrite substrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
doi:10.2528/PIERL07111808

2. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 m fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806

3. Wen, F. and B.-J. Wu, "Diffraction efficiency enhancement of guided optical waves by magnetostatic forward volume waves in the Yttrium-Iron-Garnet waveguide coated with perfect mental layers," Progress In Electromagnetics Research B, Vol. 1, 209-218, 2008.
doi:10.2528/PIERB07103003

4. Sotoodeh, Z., B. Biglarbegian, F. H. Kashani, and H. Ameri, "A novel bandpass waveguide filter structure on SIW technology," Progress In Electromagnetics Research Letters, Vol. 2, 141-148, 2008.
doi:10.2528/PIERL08010204

5. Amjadi, S. M. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update fdtd method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

6. Mondal, M. and A. Chakrabarty, "Resonant length calculation and radiation pattern synthesis of longitudinal slot antenna in rectangular waveguide," Progress In Electromagnetics Research Letters, Vol. 3, 187-195, 2008.
doi:10.2528/PIERL08042204

7. Park, J. K., J. N. Lee, D. H. Shinan, and H. J. Eom, "A full-wave analysis of a coaxial waveguide slot bridge using the fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

8. Li, Y. Y., P. F. Gu, M. Y. Li, H. Yan, and X. Liu, "Research on the wide-angle and broadband 2D photonic crystal polarization splitter," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 265-273, 2006.
doi:10.1163/156939306775777242

9. El Sabbagh, M. A. and M. H. Bakr, "Analytical dielectric constant sensitivity of ridge waveguide filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 363-374, 2006.
doi:10.1163/156939306775701731

10. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross-section of the shape of a cardioid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

11. Chang, H.-W. and W.-C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1653-1662, 2007.

12. Kawachi, M., "Silica waveguides on silicon and their application to integrated optic components," Optical and Quantum Elec., Vol. 22, 391, 1990.
doi:10.1007/BF02113964

13. Valette, S., S. Renard, H. Denis, J. P. Jadot, A. Founier, P. Philippe, P. Gidon, and E. Desgranges, "Si-based integrated optics technologies," Solid State Technol., Vol. 32, No. 2, 69, 1989.

14. Henry, C. H., G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silicon for hybrid optical packaging," J. Lightwave Technol., Vol. 7, 1530, 1989.
doi:10.1109/50.39094

15. Izawa, T., H. Mori, Y. Murakami, and N. Shimizu, "Deposited silica waveguide for integrated optical circuits," Appl. Phys. Lett., Vol. 38, 483, 1981.
doi:10.1063/1.92426

16. Kawachi, M., M. Yasu, and T. Edahiro, "Fabrication of SiO2-TiO2 glass planar optical waveguides by Flame Hydrolysis Deposition," Electro. Lett., Vol. 19, No. 5, 583, 1983.
doi:10.1049/el:19830398

17. Kawachi, M., M. Yasu, and M. Kobayashi, "Flame Hydrolysis Deposition of SiO2-TiO2 glass planar optical waveguide on silicon," Jpn. J. Appl. Phys., Vol. 22, 1932, 1983.
doi:10.1143/JJAP.22.1932

18. Nourshargh, N. A., E. M. Starr, and T. M. Ong, "Integrated optic 1 × 4 splitter in SiO/GeO2," Electron. Lett., Vol. 25, 981, 1989.
doi:10.1049/el:19890656

19. Kashyap, R., B. J. Ainslie, and G. D. Maxwell, "Second harmonic generation in GeO2 rigid waveguide," Electron. Lett., Vol. 25, 206, 1989.
doi:10.1049/el:19890148

20. Hickernell, F. S., "Optical waveguides on silicon," Solid State Technol., Vol. 31, No. 11, 83, 1988.

21. Kim, Y. J. and D. W. Shin, "Compositional analysis of SiO2 optical film fabricated by Flame Hydrolysis Deposition," Journal of Ceramic Processing Research, Vol. 3, No. 3, 186-191, 2002.

22. Lucovsky, G., M. J. Manitini, J. K. Srivastava, and E. A. Irene, "Low temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy," J. Vac. Sci. Technol. B, Vol. 5, No. 2, 530, 1987.
doi:10.1116/1.583944

23. Rojas, S., et al. "Properties of silicon dioxide films prepared by low-pressure chemical vapor deposition from tetraethylorthosilicate," J. Vac. Sci. Technol. B, Vol. 8, No. 6, 1177-1184, Nov/Dec. 1990.
doi:10.1116/1.584937

24. Becker, F. S., D. Pawlik, H. Anzinger, and A. Spitzer, "Low-pressure deposition of highquality SiO2 films by pyrolisis of tetraethylorthosilicate," J. Vac. Sci. Technol. B, Vol. 5, 1555, 1987.
doi:10.1116/1.583673

25. Sassela, A., "Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride," Phy. Rev. B, Vol. 48, 14208, 1993.
doi:10.1103/PhysRevB.48.14208

26. Gallener, F. L., "Band limits and the vibrational spectra of tetrahedral glasses," Phy. Rev. B, Vol. 19, 4292, 1979.
doi:10.1103/PhysRevB.19.4292

27. Sen, P. N. and M. F. Thorpe, "Phonons in AX2 glasses: From molecular to band like modes," Phys. Rev. B, Vol. 15, 4030, 1977.
doi:10.1103/PhysRevB.15.4030

28. Boyd, I. W., "Deconvolution of the infrared absorption peak of the vibrational stretching mode of silicon dioxide: Evidence for structural order?," Appl. Phys. Lett., Vol. 51, 418, 1987.
doi:10.1063/1.98408

29. Tolstoy, V. P., I. V. Chernysnova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films, John Wile & Sons Inc., 2003.

30. Kim, Y. T., S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im, and D. H. Yoon, "Influence of hydrogen on SiO2 thick film deposited by PECVD and FHD for silica optical waveguide," Cryst. Res. Technol., Vol. 37, No. 12, 1257-1263, 2002.
doi:10.1002/crat.200290000

31. Edahiro, T., M. Kawachi, S. Sudo, and S. Tomaru, "Deposition properties of high silica particles in the flame hydrolysis reaction for optical fiber fabrication," Jap. J. Appl. Phys., Vol. 19, No. 11, 2047-2054, 1980.
doi:10.1143/JJAP.19.2047

32. Shin, H., J.-H. Yi, J.-G. Baek, and M. Choi, "Preperation and characterization of SiO2-B2O3-P2O5 particles and films generated by flame hydrolysis deposition for planar lightwave circuits," J. Material Res., Vol. 17, No. 2, 315-322, 2002.
doi:10.1557/JMR.2002.0045

33. Pliskin, W. A. and H. S. Lehman, "Structural evaluation of silicon oxide films," J. Electrochem Soc., Vol. 112, 1013, 1965.
doi:10.1149/1.2423333

34. Shirai, H. and R. Takeda, "Determination of thickness of thin thermal oxide layers on Czochralski grown silicon wafers from their longitudinal optical vibrational mode," Jpn. J. Appl. Phys., Vol. 35, 3876, 1996.
doi:10.1143/JJAP.35.3876

35. Devine, R. A. B., "Structural nature of the Si/SiO2 interface through infrared spectroscopy," Appl. Phys. Lett., Vol. 68, 3108, 1996.
doi:10.1063/1.116438

36. Bjorkman, C. H., T. Yamazaki, S. Miyazaki, and M. Hirose, "Analysis of infrared attenuated total reflection spectra from thin SiO2 films on Si," J. Appl. Phys., Vol. 77, 313, 1995.
doi:10.1063/1.359394