Vol. 4
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-08-15
Half Mode Substrate Integrated Waveguide Broadband Bandpass Filter
By
Progress In Electromagnetics Research Letters, Vol. 4, 131-138, 2008
Abstract
A planar half mode substrate integrated waveguide (HMSIW) broadband bandpass filter is proposed. It is realized by cascading a lowpass filter and a highpass filter. A transmission line with half mode substrate integrated waveguide (HMSIW) on the circuit board has the characteristic of highpass, while a periodic uniform photo band structure (PBG) array has the characteristic of bandstop. Combining these two structures, a novel compact broadband bandpass filter (BPF) is fabricated and measured. Measured results show that the proposed BPF has wide bandwidth from 11.8 GHz to 23.8 GHz, all the measured insert loss are less than 2.1 dB, return loss are less than 9 dB in the passband. The BPF achieves a wide stopband with 34 dB attenuation low to 5GHz and 27 dB attenuation up to 35GHz.
Citation
Cuilin Zhong, Jun Xu, Zhi-Yuan Yu, Mao-Yan Wang, and Jun-Hong Li, "Half Mode Substrate Integrated Waveguide Broadband Bandpass Filter," Progress In Electromagnetics Research Letters, Vol. 4, 131-138, 2008.
doi:10.2528/PIERL08060103
References

1. Kuo, J. T. and E. Shin, "Wideband bandpass filter design with three-line microstrip structures," IEEE MTT-S Int. Microw. Symp. Dig., 1593-1596, May 2001.

2. Gao, J., L. Zhu, W. Menzel, and F. Bugelsack, "Shortcircuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 104-106, August 2006.
doi:10.1109/LMWC.2006.869870

3. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip CPW structure," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 844-846, December 2005.
doi:10.1109/LMWC.2005.860016

4. Yang, G. M., R. H. Jin, and J. P. Geng, "Planar microstrip UWB bandpass filter using U-shaped slot coupling structure," Electronics Letters, Vol. 42, No. 25, December 2006.

5. Wang, Y., W. Hong, and Y. Dong, "Half mode substrate integrated waveguide (HMSIW) bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 17, 265-267, April 2007.

6. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
doi:10.2528/PIERL08020902

7. Shobeyri, M. and M. H. Vadjed Samiei, "Compact ultra-wide band bandpass filter with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 4, 25-31, 2008.
doi:10.2528/PIERL08050205

8. Ahn, D., J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, 86-92, January 2001.
doi:10.1109/22.899965

9. Rahman, M. and M. A. Stuchly, "Modeling and application of 2D photonic band gap structures," IEEE Proceedings of A erospace Conference, Vol. 2, 893-898, March 2001.

10. Yun, T. Y. and K. Chang, "Uniplanar one-dimensional photonicbandgap structures and resonators," IEEE Trans. Microwave Theory Tech., Vol. 49, 549-553, March 2001.
doi:10.1109/22.910561

11. Radisic, V., Y. Qian, R. Coccioli, and T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, February 1998.
doi:10.1109/75.658644

12. Taflove, A., Computational Electrodynamics: The Finitedifference Time-domain Method, Artech House Publications, 1995.