Vol. 2
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-05-21
Spatial Filters for Linearly Polarized Antennas Using Free Standing Frequency Selective Surface
By
Progress In Electromagnetics Research M, Vol. 2, 167-188, 2008
Abstract
Free standing planar frequency selective surfaces (FSSs) are studied when utilized as spatial filters for linearly polarized antennas. The antenna spatial filter investigated in the present work is constructed up as a finite planar array of conducting strip dipoles. The electric field integral equation (EFIE) technique with the Rao-Wilton-Glison (RWG) basis functions are used to get the current distribution on the conducting strips. The current distribution and backscattered electric field due to an incident plane wave are calculated and compared to some published work. The effect of polarization on the scattered field, and the frequency response of the spatial filter are studied. To test the operation of the proposed planar FSS, a bowtie antenna is used with the FSS employed as a spatial filter. The field transmitted by the antenna and passed over a wide frequency band through the FSS is calculated. It is shown that such a free standing planar FSS can operate as a band stop filter for linearly polarized antennas. It is also shown that even when the size of the array is reduced, the FSS maintains its frequency response with a very slight change in the center frequency of the stop band. The effect of element size, spacing between the elements, and interleaving the columns of the FSS on the frequency response of the FSS are studied. The effect of the spatial filter on the antenna input impedance is studied over a wide frequency band. The radiation pattern of the bowtie is calculated in the presence of the spatial filter. It is shown that the existence of the later causes considerable reduction in the radiation pattern within the stop band of the filter.
Citation
Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein, and Nagda El-Minyawi, "Spatial Filters for Linearly Polarized Antennas Using Free Standing Frequency Selective Surface," Progress In Electromagnetics Research M, Vol. 2, 167-188, 2008.
doi:10.2528/PIERM08041606
References

1. Agrawal, V. D. and W. A. Immbriale, "Design of a dichroic Cassegrain subreflector," IEEE Trans. Antennas Propagat., Vol. 27, No. 4, 466-473, Jul. 1979.
doi:10.1109/TAP.1979.1142119

2. Lee, S.-W., "Scattering by dielectric loaded screen," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 656-665, Sep. 1971.
doi:10.1109/TAP.1971.1140010

3. Hirai, J. and I. Yokota, "Electromagnetic shielding glass of frequency selective surfaces," Electromagnetic Compatibility International Symposium, 314-316, 1999.

4. Unal, E., A. Gokcen, and Y. Kutlu, "Effective electromagnetic shielding," IEEE Microwave Magazine, Vol. 7, No. 4, 48-54, Aug. 2006.
doi:10.1109/MMW.2006.1663989

5. Govindaswamy, S., J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddadm, "Frequency selective surface based band pass filters in the near infrared region," Microwave and Optical Technology Letters, Vol. 41, No. 4, May 2004.
doi:10.1002/mop.20112

6. Qing, A., "Vector spectral-domain method for the analysis of frequency selective surfaces ," Progress In Electromagnetics Research, Vol. 65, 201-232, 2006.
doi:10.2528/PIER06091401

7. Vardaxoglou, J. C., Frequency Selective Surface, Analysis and Design, Research Studies Press Ltd., 1997.

8. Chen, C. C., "Scattering by a two dimensional periodic array of conducting plates," IEEE Trans. Antennas Propagat., Vol. 18, 660-665, 1970.
doi:10.1109/TAP.1970.1139760

9. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

10. Hussein, K. A., "Fast computational algorithm for EFIE applied to arbitrarily shaped conducting surface," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502

11. Ozlem, A. C. and P. H. Pathak, "Array guided surface waves on a finite planar array of dipoles with or without a grounded substrate ," IEEE Trans. Antennas Propagat., Vol. 54, No. 8, 2244-2252, Aug. 2006.
doi:10.1109/TAP.2006.879185

12. Hussein, K. F. A., "Accurate computational algorithm for calculation of input impedance of antennas of arbitrary shaped conducting surfaces ," Applied Computational Electromagnetic Society Journal, Vol. 22, No. 3, Nov. 2007.

13. Hussein, K. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101

14. Hussein, K. A., "Efficient near-field computation for radiation and scattering from conducting surfaces of arbitrary shape," Progress In Electromagnetics Research, Vol. 69, 267-285, 2007.
doi:10.2528/PIER07010302

15. Yuan, N., X.-C. Nie, Y.-B. Gan, T.-S. Yeo, and L.-W. Li, "Accurate analysis of conformal antenna arrays with finite and curved frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1745-1760, 2007.

16. Li, D., Y. J. Xie, P.Wang, and R. Yang, "Applications of split-ring resonances on multi-band frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1551-1563, 2007.
doi:10.1163/156939307782000271

17. Ma, D. and W. X. Zhang, "Mechanically tunable frequency selective surface with square-loop-slot elements," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2267-2276, 2007.
doi:10.1163/156939307783134407

18. Oraizi, H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401

19. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

20. Delihacioglu, K., S. Uckun, and T. Ege, "FSS comprised of one-and two-turn square spiral shaped conductors on dielectric slab," Progress In Electromagnetics Research B, Vol. 6, 81-92, 2008.
doi:10.2528/PIERB08031213