Vol. 82
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-04-24
Design of Compact Vivaldi Antenna Arrays for UWB See through Wall Applications
By
Progress In Electromagnetics Research, Vol. 82, 401-418, 2008
Abstract
Two different types of Vivaldi antenna arrays have been designed for UWB see through wall applications. The first is a 16×1 antipodal Vivaldi antenna covering 8-12GHz, and the second is an 8×1 tapered slot antenna for 2-4GHz frequency range. The array elements are optimized to have a compact size and almost constant gain with frequency. Wilkinson power dividers were designed and fabricated to compose the feed network for the Vivaldi antenna arrays. Measured results of the manufactured antipodal and tapered slot Vivaldi antenna arrays are in excellent agreement with the simulated ones, with a gain of more than 13dBi and 12dBi respectively within their respective operating band. The first array is geared towards see through dry wall with high resolution, while the second is designed at lower frequencies to allow see through concrete wall applications. Full arrays were manufactured and connected to multi-throw switches and have been utilized as part of synthetic aperture radar.
Citation
Yunqiang Yang, Y. Wang, and Aly Fathy, "Design of Compact Vivaldi Antenna Arrays for UWB See through Wall Applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601
References

1. Wang, F.-J. and J.-S. Zhang, "Time domain characteristics of a double-printed UWB bipole antenna," Progress In Electromagnetics Research Letters, Vol. 3, 161-168, 2008.

2. Mehdipour, A., K. M-Aghdam, and R. Faraji-Dana, "Completed dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904

3. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microwave Conf., June 1979.

4. Janaswamy, R. and D. H. Schaubert, "Analysis of the tapered slot antenna," IEEE Trans. Antennas Propagat., Vol. AP-35, 1058-1064, Sept. 1987.
doi:10.1109/TAP.1987.1144218

5. Stockbroeckx, B. and A. V. Vorst, "Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate," IEEE Trans. Antennas Propagat., Vol. 48, 19-25, Jan. 2000.
doi:10.1109/8.827381

6. Greenberg, M. C., L. Virga, and C. L. Hammond, "Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application," IEEE Trans. on Vehicular Technology, Vol. 52, 305-310, Mar. 2003.
doi:10.1109/TVT.2003.808796

7. Shafieha, J. H., J. Noorinia, and Ch. Ghobadi, "Probing the feed line parameters in Vivaldi notch antennas," Progress In Electromagnetics Research B, Vol. 1, 237-252, 2008.
doi:10.2528/PIERB07102702

8. Rajabi, M., M. Mohammadirad, and N. Komjani, "Simulation of Ultra wideband microstrip antenna using EPML-TLM," Progress In Electromagnetics Research B, Vol. 2, 115-124, 2008.
doi:10.2528/PIERB07110802

9. Greenberg, M. C., L. Virga, and C. L. Hammond, "Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application," IEEE Trans. on Vehicular Technology, Vol. 52, 305-310, Mar. 2003.
doi:10.1109/TVT.2003.808796

10. Kim, S. G. and K. Chang, "Ultra wideband 8 to 40 GHz beam scanning phased array using antipodal exponentially-tapered slot antennas," IEEE MTT-S Digest, 1757-1760, 2004.

11. Ehud Gazit, E., "Improved design of the Vivaldi antenna," Proceeding Inst. Elect. Eng., pt. H, Vol. 135, No. 2, 89-92, 1988.

12. Schaubert, D. H. and T.-H. Choi, "Wideband Vivaldi arrays for large aperture antennas," Perspectives on Radio Astronomy: Technologies for Large Antenna Array, 49-58, 1999.

13. Langley, J. D. S., P. S. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," Proc. IEEE Antennas Propagation, Vol. 143, 97-102, Apr. 1996.
doi:10.1049/ip-map:19960260

14. Cohn, S. B., "A class of broadband three-port TEM-mode hybrids," IEEE Trans. Microwave Theory & Techniques, Vol. MTT-16, No. 2, 110-116, Feb. 1968.
doi:10.1109/TMTT.1968.1126617

15. Guo, Y. and R. Xu, "Ultra-wideband power splitting/combing technique using zero-degree left-handed transmission lines," Journal of Electromagnrtic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007.

16. Ehud Gazit, E., "Improved design of the Vivaldi antenna," Proc. Inst. Elect. Eng., pt. H, Vol. 135, No. 2, 89-92, Apr. 1988.

17. Greenberg, M. C., L. Virga, and C. L. Hammond, "Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application," IEEE Trans. on Vehicular Technology, Vol. 52, 305-310, Mar. 2003.
doi:10.1109/TVT.2003.808796

18. Shin, J. and D. H. Schaubert, "A parameter study of striplinefed Vivaldi notch-antenna arrays," IEEE Trans. on Antenna and Propagation, Vol. 47, No. 5, 879-886, May 1999.
doi:10.1109/8.774151

19. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.

20. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, Feb. 2008.

21. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

22. Zhu, Y.-Z., Y.-J. Xie, Z.-Y. Lei, and T. Dang, "A novel method of mutual coupling matching array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1024, 2007.

23. Tian, Y., Y.-H. Zhang, and Y. Fan, "The analysis of mutual coupling between paraboloid antennas," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1191-1203, 2007.

24. Liang, C.-H., L. Li, and X.-J. Dang, "Inequality condition for grating lobes of planar phased array," Progress In Electromagnetic Research B, Vol. 4, 101-113, 2008.

25. Vescovo, R., "Beam scanning with null and excitation constraints for linear arrays of antennas ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 267-277, 2007.
doi:10.1163/156939307779378817

26. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

27. HMC347LP3 Data Sheet, v03.0604, Hittite Microwave Corporation.