Vol. 3
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-04-01
Wideband Differential Phase Shifter Using Microstrip Nonuniform Transmission Lines
By
Progress In Electromagnetics Research Letters, Vol. 3, 151-160, 2008
Abstract
A new structure is proposed for wideband differential phase shifter. The proposed structure consists of a microstrip Nonuniform Transmission Line (NTL) and a microstrip Uniform Transmission Line (UTL). To optimally design the NTL, its strip width is expanded in a truncated Fourier series, firstly. Then, the optimum values of the coefficients of the series are obtained through an optimization approach to have low phase shift error and low reflection coefficient in desired frequency bandwidth. The usefulness of the proposed structure is studied using two examples.
Citation
Mohammad Khalaj-Amirhosseini, "Wideband Differential Phase Shifter Using Microstrip Nonuniform Transmission Lines," Progress In Electromagnetics Research Letters, Vol. 3, 151-160, 2008.
doi:10.2528/PIERL08031603
References

1. Koul, S. K. and B. Bhat, Microwave and Millimeter Wave Phase Shifters, Artech House, 1991.

2. Li, L., C. H. Liang, and C. H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structures ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 161-174, 2007.
doi:10.1163/156939307779378826

3. Schiffman, B. M., "A new class of broad-band microwave 90-degree phase shifters," IRE Trans. Microwave Theory and Techniques, 232-237, Apr. 1958.
doi:10.1109/TMTT.1958.1124543

4. Quirarte, J. L. R. and J. P. Starski, "Synthesis of Schiffman phase shifters," IEEE Trans. Microwave Theory and Techniques, 1885-1889, Nov. 1991.

5. Quirarte, J. L. R. and J. P. Starski, "Novel Schiffman phase shifters," IEEE Trans. Microwave Theory and Techniques, 9-14, Jan. 1993.
doi:10.1109/22.210223

6. Free, C. E. and C. S. Aitchison, "Improved analysis and design of coupled-line phase shifters," IEEE Trans. Microwave Theory and Techniques, 2126-2131, Sep. 1995.
doi:10.1109/22.414549

7. Mortenson, K. E. and J. M. Borrego, Design, Performance and Application of Microwave Semiconductor Control Components, Artech House, 1972.

8. Atwater, H. A., "Circuit design of the loaded-line phase shifter," Trans. Microwave Theory and Techniques, Vol. 33, No. 8, 626-634, July 1985.

9. Wang, Z. G., B. Yan, R. M. Xu, and Y. C. Guo, "Design of a KU band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2007.
doi:10.2528/PIER07071904

10. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using step-by-step numerical integration," Progress In Electromagnetics Research, Vol. 58, 187-198, 2006.

11. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using Taylor's series expansion," Int. J. RF and Microwave Computer-Aided Eng., Vol. 16, No. 5, 536-544, Sep. 2006.
doi:10.1002/mmce.20173

12. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using fourier series expansion," Int. J. RF and Microwave Computer-Aided Eng., Vol. 17, No. 3, 345-352, May 2007.
doi:10.1002/mmce.20229

13. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.
doi:10.2528/PIER07020801

14. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the method of moments," Asia-Pacific Microwave Conf. (APMC 2007 ), Bangkok, Thailand, Dec. 12-14, 2007.

15. Paul, C. R., Analysis of Multiconductor Transmission Lines, John Wiley and Sons Inc., 1994.

16. Lu, K., "An efficient method for analysis of arbitrary nonuniform transmission lines," IEEE Trans. Micro. Theory and Tech., 9-14, Jan. 1997.