Vol. 3
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-03-19
Analysis of Pyramid EM Wave Absorber by FDTD Method and Comparing with Capacitance and Homogenization Methods
By
Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008
Abstract
In this paper, we model an array of pyramid electromagnetic wave absorbers and calculate the return loss of this array using the FDTD method. For modeling the frequency dependent of the absorber, the Debye model is used. In doing so, a 3 × 3 structure of nine pyramid absorber is chosen instead of the array. The results are compared with capacitance and homogenization methods using average values for ε [10]. The results clearly show that the FDTD is an accurate method for calculating the return loss of an array of pyramid absorbers as compared with three other existing methods, and can be used to simulate the array of pyramid absorbers with different sizes in a wide range of frequencies.
Citation
Amineh Khajehpour, and Seyed Mirtaheri, "Analysis of Pyramid EM Wave Absorber by FDTD Method and Comparing with Capacitance and Homogenization Methods," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802
References

1. Chambers, B., "Characteristics of radar absorbers with tapered thickness," IEEE Conf. Antennas and Propagation, Apr. 1999.

2. Miyazaki, Y. and K. Tanoue, "Tapered and graded index type electromagnetic absorbers using inhomogeneous loss dielectric layer," EMC’89, Vol. 2, Nagoya, Japan, Sept. 1989.

3. Smith, F. C., "Effective permittivity of dielectric honeycombs," IEEE Proc. Microw. Antennas and Propagation, Vol. 146, No. 1, Feb. 1999.

4. Park, M. J., J. Choi, and S. S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders," IEEE Trans. Magnetics, Vol. 36, No. 5, Sep. 2000.

5. Emerson, W. H., "Electromagnetic absorbers and anechoic chambers through the years," IEEE Trans. Antennas and Propagation, Vol. 21, No. 4, July 1973.

6. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER03052601

7. Marquart, N. P., "Experimental anechoic chamber measurements of a target near an interface," Progress In Electromagnetics Research, Vol. 61, 143-158, 2006.
doi:10.2528/PIER06031003

8. Anzai, H., Y. Noito, and T. Mizumoto, "Analysis of pyramid EM wave absorber," Technical Report of IEICE, EMCJ 94-27, Sept.1994.

9. Kuester, E. F. and C. L. Holloway, "A low frequency model for wedge or pyramid absorber array — I: Theory," IEEE Trans. Electromag. Compat., Vol. 36, 300-306, Nov. 1994.
doi:10.1109/15.328859

10. Kuester, E. F. and C. L. Holloway, "A low frequency model for wedge or pyramid absorber array—II: Computed and measured," IEEE Trans. Electromag. Compat., Vol. 36, 307-313, Nov. 1994.

11. Simovski, C. R., B. Sauviac, and S. L. Prosvirnin, "Homogenization of an array of S-shaped particles located on a dielectric interface," Progress In Electromagnetics Research, Vol. 39, 249-264, 2003.
doi:10.2528/PIER02093001

12. Toflove, A., Computational Electrodynamics, the Finite Difference Time Domain Method, Artech House, 1995.

13. Holloway, C. L., P. M. McKenna, R. A. Dalke, R. A. Perala, and C. L. Devor, "Time-domain modeling, characterization and measurements of anechoic and semi-anechoic electromagnetic test chambers," IEEE Trans. Electromag. Compat., Vol. 44, No. 1, Feb. 2002.
doi:10.1109/15.990732

14. Hu, X.-J. and D. -B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

15. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

16. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

17. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
doi:10.2528/PIER02021703

18. Kumar, A. and S. Sharma, "Measurement of dielectric constant and loss factor of the dielectric material at microwave requencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

19. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "Scattering computation from the target with lossy background," Progress In Electromagnetics Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503

20. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbent textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

21. Khalaj-Amirhosseini, M., "Identification of inhomogeneous or multilayer dielectric walls," Progress In Electromagnetics Research, Vol. 78, 39-48, 2008.
doi:10.2528/PIER07082703

22. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.

23. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503

24. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. AP., Vol. 14, No. 4, 302-307, 1966.