Vol. 1
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-02-21
Adapting the Normalized Cumulative Periodogram Parameter-Choice Method to the Tikhonov Regularization of 2-d /TM Electromagnetic Inverse Scattering Using Born Iterative Method
By
Progress In Electromagnetics Research M, Vol. 1, 111-138, 2008
Abstract
A new method of choosing the regularization parameter, originally developed for a general class of discrete ill-posed problems, is investigated for electromagnetic inverse scattering problems that are formulated using a penalty method. This so-called Normalized Cumulative Periodogram (NCP) parameter-choice method uses more than just the norm of the residual to determine the regularization parameter, and attempts to choose the largest regularization parameter that makes the residual resemble white noise. This is done by calculating the NCP of the residual vector for each choice of the regularization parameter, starting from large values and stopping at the first parameter which puts the NCP inside the Kolmogorov- Smirnov limits. The main advantage of this method, as compared, for example, to the L-curve and Generalized Cross Validation (GCV) techniques, is that it is computationally inexpensive and therefore makes it an appropriate technique for large-scale problems arising in inverse imaging. In this paper, we apply this technique, with some modification, to the Tikhonov-regularized functional arising in the 2-D Transverse Magnetic (TM) inverse electromagnetic problem, which is formulated via an integral equation and solved using the Born iterative method (BIM).
Citation
Puyan Mojabi, and Joe LoVetri, "Adapting the Normalized Cumulative Periodogram Parameter-Choice Method to the Tikhonov Regularization of 2-d /TM Electromagnetic Inverse Scattering Using Born Iterative Method," Progress In Electromagnetics Research M, Vol. 1, 111-138, 2008.
doi:10.2528/PIERM08012401
References

1. Semenov, S. Y., V. G. Posukh, A. E. Bulyshev, and T. C. Williams, "Microwave tomographic imaging of the heart in intact swine," Journal of Electromagnetic Waves a Applications, Vol. 20, 873-890, 2006.
doi:10.1163/156939306776149897

2. Guo, B., Y. Wang, and J. Li, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

3. Yan, L. P., K. M. Huang, and Liu C. J., "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, 1829-1843, 2007.

4. Huang, K., X. B. Xu, and L. P. Yan, "A new noninvasive method for determining the conductivity of tissue embedded in multilayer biological structure," Journal of Electromagnetic Waves and Applications, Vol. 16, 851-860, 2002.
doi:10.1163/156939302X00192

5. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications , Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860

6. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, K. T. Mathew, and S. J. Abraham, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research , Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

7. Weedon, W. H., W. C. Chew, and P. E. Mayes, "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501

8. Roger, A. and F. Chapel, "Iterative methods for inverse problems," Progress in Electromagnetics Research, Vol. 05, 423-454, 1991.

9. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion: State of art," Progress in Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

10. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress in Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702

11. Wang, Y. M. and W. C. Chew, "An iterative solution of twodimensional electromagnetic inverse scattering problem," Int. J. Imaging Syst. Technol., Vol. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

12. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

13. Habashy, T. M. and R. J. Mitra, "On some inverse methods in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, 25-58, 1987.

14. Rekanos, I. T., "Time-domain inverse scattering using Lagrange multipliers: An iterative FDTD-based optimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824

15. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

16. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
doi:10.1163/156939300X00383

17. Belkebir, K., S. Bonnard, F. Pezin, P. Sabouroux, and M. Saillard, "Validation of 2D inverse scattering algorithms from multifrequency experimental data ," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1637-1667, 2000.
doi:10.1163/156939300X00437

18. Zaeytijd, J. D., A. Franchois, C. Eyraud, and J. M. Geffrin, "Fullwave three-dimensional microwave imaging with a regularized Gauss-Newton method — Theory and experiment ," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 2007.

19. Tikhonov, A. N. and V. Y. Arsenin, Solution of Ill-posed Problems , John Wiley & Sons, 1977.

20. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems , SIAM, 1998.

21. Abubakar, A., P. M. van den Berg, T. M. Habashy, and H. Braunisch, "A multiplicative regularization approach for deblurring problems," IEEE Transactions on Image Processing, Vol. 13, No. 11, 1524-1532, 2004.
doi:10.1109/TIP.2004.836172

22. Hansen, P. C., "Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank," SIAM J. Sci. Stat. Comput., Vol. 11, 503-518, 1990.

23. Kilmer, M. E. and D. P. O'Leary, "Choosing regularization parameters in iterative methods for ill-posed problems," SIAM J. Matrix. Anal. Appl., Vol. 22, 1204-1221, 2001.
doi:10.1137/S0895479899345960

24. O'Leary, D. P. and J. A. Simmons, "A bidiagonalizationregularization procedure for large scale discretization of ill-posed problems," SIAM J. Sci. Statist. Comput., Vol. 2, 474-489, 1981.

25. Morozov, V. A., Methods for Solving Incorrectly Posed Problems, Springer-Verlag, 1984.

26. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, 561-580, 1992.
doi:10.1137/1034115

27. Hansen, P. C. and D. P. O'leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM J. Sci. Comp., Vol. 14, 1487-1503, 1993.
doi:10.1137/0914086

28. Golub, G., M. Heath, and G. Wahba, "Generalized crossvalidation as a method for choosing a good ridge parameter," Technometrics, Vol. 21, 215-223, 1979.
doi:10.2307/1268518

29. Iwama, N., M. Yamaguchi, K. Hattori, and M. Hayakawa, "GCVaided linear reconstruction of the wave distribution function for the ground-based direction finding of magnetospheric VLF/ELF waves," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5-6, 757-782, 1995.
doi:10.1163/156939395X00901

30. Belge, M., M. E. Kilmer, and E. L. Miller, "Efficient determination of multiple regularization parameters in a generalized L-curve framework," Inverse Problems, Vol. 18, 1161-1183, 2002.
doi:10.1088/0266-5611/18/4/314

31. Hansen, P. C., M. E. Kilmer, and R. H. Kjeldsen, "Exploiting residual information in the parameter choice for discrete ill-posed problems ," BIT Numerical Mathematics, Vol. 46, 41-59, 2006.
doi:10.1007/s10543-006-0042-7

32. Hansen, P. C., "The discrete picard condition for discrete ill-posed problems," BIT, Vol. 30, 658-672, 1990.
doi:10.1007/BF01933214

33. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision ," Inverse Problems, Vol. 21, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

34. Chew, W. C. and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous body," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 12, 1995.
doi:10.1109/75.481854

35. Guest Editors'Introduction "Testing inversion algorithms against experimental data: Inhomogeneous targets," Inverse Problems, S1-S3, 2005.

36. Zha, H. and P. C. Hansen, "Regularization and the general Guass-Markov linear model," Math. Comp., Vol. 55, 613-624, 1990.
doi:10.2307/2008436

37. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, 1999.

38. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas. Propag., Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

39. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate gradient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 05, 159-239, 1991.

40. Tran, T. V. and A. McCowen, "A unified family of FFT-based methods for dielectric scattering problems ," Journal of Electromagnetics Waves and Applications, Vol. 7, No. 5, 739-763, 1993.
doi:10.1163/156939393X00840

41. Peng, Z. Q. and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: Marching-on-in-frequency approach," Journal of Electromagnetics Waves and Applications, Vol. 8, No. 8, 973-972, 1994.
doi:10.1163/156939394X00704

42. Hansen, P. C., "Numerical tools for analysis and solution of fredholm integral equation of the first kind," Inverse Problems, Vol. 8, 849-872, 1992.
doi:10.1088/0266-5611/8/6/005

43. Engl, H. W., M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 2000.

44. Hansen, P. C., "Perturbation bounds for discrete Tikhonov regularization," Inverse Problems, Vol. 5, L41-L44, 1989.
doi:10.1088/0266-5611/5/4/002

45. Hansen, P. C., "Regularization, GSVD and truncated GSVD," BIT, Vol. 29, 491-594, 1989.
doi:10.1007/BF02219234

46. Fuller, W. A., Introduction to Statistical Time Series, Wiley, 1976.