Vol. 3
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-02-05
A New Deembedding Method in Permittivity Measurement of Ferroelectric Thin Film Material
By
Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008
Abstract
A new deembedding method in permittivity measurement of ferroelectric thin film material is proposed in this paper. By measuring the two scattering matrixes of the two samples with different length, the propagation constant of the actual network under test (ANUT) can be obtained. Further more, the permittivity would be extracted. The results show that though the proposed deembedding method, the error induced by embedding can be eliminated successfully and the propagation constant of the ANUT can be extracted accurately.
Citation
Xi He, Zong-Xi Tang, Biao Zhang, and Yunqiu Wu, "A New Deembedding Method in Permittivity Measurement of Ferroelectric Thin Film Material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501
References

1. Wu, C.-J., C.-M. Fu, W.-K. Kuo, and T.-J. Yang, "Microwave surface impedance of a nearly ferroelectric superconductor," Progress In Electromagnetics Research, Vol. 73, 39-47, 2007.
doi:10.2528/PIER07030502

2. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SOP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.

3. Eldek, A. A., "Wideband 180◦ phase shifter using microstrip-CPW-icrostrip transition," Progress In Electromagnetics Research B, Vol. 2, 177-187, 2008.
doi:10.2528/PIERB07111507

4. Subruamanyam, G., F. V. Keuls, and F. A. Miranda, "A K-band tunable microstrip bandpass filter using a thin film conductor/ferroelectric/dielectric multilayer configurations," IEEE Micro. Guided Wave Lett., Vol. 8, No. 3, 78-80, Feb. 1998.
doi:10.1109/75.658647

5. Acikel, B., T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, "A new high performance phase shifter using BaSrTiO3thin films," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 7, 237-239, Jul. 2002.
doi:10.1109/LMWC.2002.801129

6. Gevorgian, S. S., E. F. Carlsson, S. Runder, U. Helmersson, E. L. Kollberg, E. Wikborg, and O. G. Vendik, "HTS/ferroelectric devices for microwave applications," IEEE Trans. Appl. Supercond., Vol. 7, No. 2, 2458-2461, Jun. 1997.
doi:10.1109/77.621737

7. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of magnetic materials in microwave frequency range using support vector machine regression ," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

8. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

9. Huang, R and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

10. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

11. Tian, B.-N., D.-S. Yang, J.-M. Tang, and Q.-Z. Liu, "Analysis of transmission/reflection method for measuring electromagnetic parameters of materials," Chinese Journal of Radio Science, Vol. 16, No. 1, Mar. 2001.