Vol. 81
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-19
Numerical Simulation of Propagation of EM Pulse through Lossless Non-Uniform Dielectric Slab Using Characteristic-Based Method
By
Progress In Electromagnetics Research, Vol. 81, 197-212, 2008
Abstract
This paper demonstrates the one-dimensional computational results of the propagation of Gaussian electromagnetic pulse through dielectric slabs of finite thickness with variation in permittivity. The numerical approach used is the characteristic-based method solving the time-domain Maxwell curl equations involved with nonuniform permittivity. In the numerical model, all dielectric slabs are assumed to be isotropic, lossless, and linear. The permittivity of dielectric slab may increase or decrease linearly or sinusoidally. The numerical permittivity is finely discretized such that the variation between two adjacent grids is so small that the non-uniform permittivity is assumed to be piecewise continuous and consequently can be modeled as an individual block. The numerical results of various electric fields, both in the time- and frequency-domain, are presented and compared based on the dielectric slab of constant permittivity for close investigating the effects of the non-uniform permittivity distribution on the electromagnetic fields. It is also shown that under certain arrangement of Gaussian electromagnetic pulse and dielectric slab thickness the pattern of field propagation, reflection and transmission, can be reproduced in different time scales and frequency ranges.
Citation
Mingtsu Ho, Fu-Shun Lai, Shun-Wen Tan, and Pi-Wei Chen, "Numerical Simulation of Propagation of EM Pulse through Lossless Non-Uniform Dielectric Slab Using Characteristic-Based Method," Progress In Electromagnetics Research, Vol. 81, 197-212, 2008.
doi:10.2528/PIER08010303
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2081, 1999.
doi:10.1109/22.798002

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. Phys. Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

6. Li, Y.-L., "The permittivity based on electromagnetic wave attenuation for rain medium and its applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2231-2238, 2006.
doi:10.1163/156939306779322512

7. Gong, S.-H. and J.-Y. Huang, "Accurate analytical model of equivalent dielectric constant for rain medium," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1775-1783, 2006.
doi:10.1163/156939306779292228

8. Yang, R., Y.-J. Xie, P.Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939306777442908

9. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

10. Yang, R., Y.-J. Xie, P. Wang, and T. Yang, "Conjugate left-and right-handed material bilayered substrates qualify the subwavelength cavity resonator microstrip antennas as sensors," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2113-2122, 2006.
doi:10.1163/156939306779322486

11. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in review of left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

12. Li, Z. and T. J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007.

13. Lu, J., B.-I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a lefthanded dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728

14. Whitfield, D. L. and J. M. Janus, "Three-dimensional unsteady Euler equations solution using flux splitting," American Institute of Aeronautics and Astronautics (AIAA) Paper, 84-1552, 1984.

15. Shang, J. S., "A characteristic-based algorithm for solving 3-d time-domain Maxwell equations," Electromagnetics, Vol. 10, 3, 1990.

16. Donohoe, J. P.J. H. Beggs, and M. Ho, "Comparison of finite-difference time-domain results for scattered EM fields: Yee algorithm vs. a characteristic based algorithm," 27th IEEE Southeastern Symposiumon SystemThe ory, No. 3, 1995.

17. Ho, M., "Scattering of EM waves from traveling and/or vibrating perfect surface: Numerical simulation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 152-156, 2006.
doi:10.1109/TAP.2005.861552

18. Ho, M., "Scattering of eelectromagnetic waves from vibrating perfect surfaces: Simulation using relativistic boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 425-433, 2006.
doi:10.1163/156939306776117108

19. Ho, M. and F.-S. Lai, "Effects of medium conductivity on eelectromagnetic pulse propagation onto dielectric half space: One-dimensional simulation using characteristic-based method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1773-1785, 2007.

20. Ho, M., "Propagation of electromagnetic pulse onto a moving lossless dielectric half-space: One-dimensional simulation using characteristic-based method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 4, 469-478, 2005.
doi:10.1163/1569393053303910