Vol. 2
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-08
Waveguide Structures for Generation of Terahertz Radiation by Electro-Optical Process in GaAs and Zugep2 Using 1.55μm Fiber Laser Pulses
By
, Vol. 2, 95-102, 2008
Abstract
By discussing the basic schemes of the terahertz generation methods based on the 1550-nm ultrafast lasers briefly, GaAs and ZnGeP2 are likely to be promising nonlinear optical crystals for terahertz waves generation by using optical rectification process. However, the mismatches of velocities between the terahertz waves and optical pulses are so large that the phase-matching coherent lengths are quite short, for example, the coherent length of 0.7mm for GaAs and 0.5mm for ZnGeP2 at 2 THz around, respectively. That limited extremely the applications of these bulk excellent nonlinear optical crystals in terahertz regime. In this paper, we demonstrated theoretically that the dielectric planar waveguide could be used to enhance the coherent length of optical rectification process in THz regime. And for the first time, a dielectric planar THz waveguide that has potential applicable value in THz generation by optical rectification method was proposed. We predicted that the effective coherent length could be extended to 4mm at 2 THz in a GaAs/ZnGeP2 dielectric planar waveguide during optical rectification process pumped by ultrafast optical pulses at wavelength of 1550 nm.
Citation
Tianxin Yang, Shupeng Song, Hongtao Dong, and Rongsheng Ba, "Waveguide Structures for Generation of Terahertz Radiation by Electro-Optical Process in GaAs and Zugep2 Using 1.55μm Fiber Laser Pulses," , Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806
References

1. Gong, Y. D., M. Y. W. Chia, and B. Luo, "Terahertz spectroscopy technology trendy using 1550-nm ultrafast fiber laser," Micro. Opt. Tech. Letts., Vol. 49, No. 2, 439-443, 2007.
doi:10.1002/mop.22165

2. Takazato, A., M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, "Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation," Appl. Phy. Letts., Vol. 90, No. 17, 101119, 2007.
doi:10.1063/1.2712503

3. Planken, P. C. M, C. E. W.M. van Rijmenam, and R. N. Schouten, "Opto-electronic pulsed THz systems,", Vol. 20, S121-S127, 2005.

4. Yeh, K.-L., M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Appl. Phy. Letts., Vol. 90, No. 17, 171121, 2007.
doi:10.1063/1.2734374

5. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Letts., Vol. 26, No. 11, 846-848, 2001.
doi:10.1364/OL.26.000846

6. Mendis, R., "Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides," Opt. Letts., Vol. 31, No. 17, 2643-2645, 2006.
doi:10.1364/OL.31.002643

7. Cao, H., R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Letts., Vol. 29, No. 15, 1751-1753, 2004.
doi:10.1364/OL.29.001751

8. Nahata, A., A. Aniruddha, S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Letts., Vol. 69, No. 16, 2321-2323, 1996.
doi:10.1063/1.117511

9. Nagaia, M., K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, "Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56mm fiber laser pulses," Appl. Phys. Letts., Vol. 85, No. 18, 3974-3976, 2004.
doi:10.1063/1.1813645

10. Kumbhakar, P., T. Kobayashi, and G. C. Bhar, "Sellmeier dispersion for phase-matched terahertz generation in ZnGeP2," Appl. Opt., Vol. 43, No. 16, 3324-3328, 2004.
doi:10.1364/AO.43.003324

11. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, London, 1985.

12. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall Inc., 1984.