Vol. 2
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-03
CPW-to-Stripline Vertical via Transitions for 60ghz LTCC Sop Applications
By
, Vol. 2, 37-44, 2008
Abstract
In this work, CPW-to-stripline (SL) vertical via transitions using gradually stepped vias and embedded air cavities are presented for V-band LTCC System-on-Package (SoP) applications. In order to reduce radiation loss due to abrupt via discontinuities, gradual via transitions are proposed and investigated. In addition, in order to reduce increased parasitic shunt capacitance due to stepped via structures, air cavities are embedded below the transition vias. Using a 3-D EM simulation tool, the proposed transitions are designed and analyzed, compared to the conventional transition. Three-segment transmission lines (CPW-SL-CPW) in 7-layer LTCC dielectrics were fabricated and measured. The two stepped via (STV2) transition embedding air cavities shows an insertion and return losses of 1.6 dB and below -10 dB, respectively, over 60 GHz. The transition loss per one STV2 transition is 0.7 dB at 60 GHz.
Citation
Young Chul Lee, "CPW-to-Stripline Vertical via Transitions for 60ghz LTCC Sop Applications," , Vol. 2, 37-44, 2008.
doi:10.2528/PIERL07122805
References

1. Nagatsuma, T., A. Hirata, T. Kosugi, and H. Ito, "Over-100 GHz millimeter-wave technologies for 10 Gbit/s wireless link," Workshop WM 1 Notes of 2004 IEEE Radio and Wireless Conference, Septembe 2004.

2. Lee, Y. C., W.-I. Chang, and C. S. Park, "Monolithic LTCC SiP transmitter for 60GHZ wireless communication terminals," IEEE MTT-S Int. Microwave Symposium Digest, June 2005.

3. Ohata, K., K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, K. Ikeda, and N. Takahashi, "1.25 Gbps wireless gigabit ethernet link at 60 GHz-band," IEEE MTT-S In. Microwave Symposium Digest, Vol. 1, No. 1, 373-376, June 2003.

4. Lee, J.-H., N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. M. Tentzeris, "A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 7, 2925-2936, 2006.
doi:10.1109/TMTT.2006.877440

5. Panther, A., C. Glaser, M. G. Stubbs, and J. S. Wight, "Vertical transitions in low temperature co-fired ceramics for LMDS applications," IEEE MTT-S Int. Microwave Symposium Digest, Vol. 3, 1907-1910, 2001.

6. Lei, S., Y. X. Guo, and L. C. Ong, "CPW to stripline transitions in LTCC for millimeter-wave applications," IEEE Asia Pacific Microwave Conference (APMC) Proceedings, 2005.

7. Schmuckle, F. J., A. Jentzch, W. Heinrich, J. Butz, and M. Spinnler, "LTCC as MCM substrate: design of strip-line structures and flip-chip interconnections," IEEE MTT-S Int. Microwave Symposium Digest, Vol. 3, 1093-1096, 2001.

8. Yang, T.-H., C.-F. Chen, T.-Y. Huang, C.-L. Wang, and R.-B. Wu, "A 60 GHz LTCC transition between microstrip line and substrate integrated waveguide," IEEE Asia Pacific Microwave Conference (APMC) Proceedings, 2005.

9. Heyen, J., A. Gordiyenko, P. Heide, and A. F. Jacob, "Vertical feedthroughs for millimeter-wave LTCC modules," 33rd European Microwave Conference Proceedings, 411-414, 2003.
doi:10.1109/EUMA.2003.340977

10. CST MICROWAVE STUDIO , CST Inc., [Online] Available: http://www.cst.com.