Vol. 2
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-03
Estimation of Relative Permittivity of Shallow Soils by Using the Ground Penetrating Radar Response from Different Buried Targets
By
, Vol. 2, 63-71, 2008
Abstract
Combined ground penetrating radar and metal detector equipment are now available (e.g., MINEHOUND, ERA Technology- Vallon GmbH) for landmine detection. The performance of the radar detector is influenced by the electromagnetic characteristics of the soil. In this paper we present an experimental procedure that uses the same equipment for the detection and calibration by means of signal processing procedures for the estimation of the relative permittivity of the soil. The experimental uncertainties of this method are also reported.
Citation
Lorenzo Capineri, David J. Daniels, Pierluigi Falorni, Olga Lucia Lopera, and Colin G. Windsor, "Estimation of Relative Permittivity of Shallow Soils by Using the Ground Penetrating Radar Response from Different Buried Targets," , Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803
References

1. "Soil Properties & GPR Detection of Landmines. A Basis for Forecasting & Evaluation of GPR Performance," Publication DRES CR2000-091, October 1, 1999.

2. Cross, G., D. Benson, J. D. Redman, A. P. Annan, and Y. Das, "GPR for anti-personnel landmine detection: Results of experimental and theoretical studies ," SPIE: Detection and Remediation Technologies for Mines and Minelike Targets VIII (OR48), 21-25, Orlando, Florida, April 2003.

3. Druyts, P., A. Merz, M. Peichl, and G. Triltzsch, "HOPE: raising the reliability of mine detection through an innovative a handheld multi-sensor (MD, GPR, MWR) mine detector prototype with imaging capabilities," Proceedings of PIERS 2003, Singapore, January 2003.

4. Ishikawa, J., M. Kiyota, and K. Furuta, "Evaluation of test results of GPR-based anti-personnel landmine detection systems mounted on robotic vehicles ," Proc. of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining (HUDEM2005), 39-44, 2005.

5. Rhebergen , J. B. and J. M. Ralston, "Test and evaluation protocols for GPR-based mine-detection systems: A proposal," Detection and Remediation Technologies for Mines and Minelike Targets X, Proceedings of the SPIE, Vol. 5794, 941-952, 2005.

6. Schoolderman, A. J. and J. H. J. Roosenboom, "Detection performance assessment of hand-held mine detection systems in a procurement process:Test set-up for MDs and MD/GPRs," Proceedings of SPIE, Vol. 5794, 2005.
doi:10.1117/12.605135

7. Francisca, F. M. and V. A. Rinaldi, "Complex dielectric permittivity of soil-organic mixtures 20 MHz–1.3 GHz," Journal of Environmental Engineering, ,ASCE, 347-357, April, 2003.

8. Hendrickx, J. M. H., B. Borchers, J. Woolslayer, L. W. Dekker, C. Ritsema, and S. Paton, "Spatial variability of dielectric properties in field soils," Detection and Remediation Technologies for Mines and Minelike Targets VI, Proceedings of the SPIE, Vol. 4394, 398-408, 2001.

9. Final business plan for a CEN workshop on humanitarian mine action — test and evaluation — metal detectors — Part 2: Soil characterisation for metal detector and ground penetrating radar performance, 2006.

10. Daniels, D. J., Surface-penetrating Radar, Institution of Electrical Engineers Radar Series, ERA Technology, ISBN 0-85296-862, No. 6, 1996.