Vol. 2
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-03
Hybrid Ct-BEM Method Analysis of Unscreened Slab Lines
By
Progress In Electromagnetics Research Letters, Vol. 2, 29-36, 2008
Abstract
A hybrid method of boundary element method (BEM) combined with conformal transformation (CT) is presented to calculate the capacitance of the unscreened slab lines. Conformal transformation transforms the infinite boundary boundary-value problem with the unscreened slab line into a finite boundary one that can be solved by the BEM, then the capacitance of the unscreened slab line is obtained by the BEM. Three representative computational examples, unscreened cylindrical single-bar slab line, unscreened rectangular single-bar slab line and unscreened cylindrical-bar coupled slab line, are given to validate the accuracy and efficiency of the CT-BEM hybrid method.
Citation
Qinhong Zheng, Fuyao Xie, Bin Yao, and Wude Cai, "Hybrid Ct-BEM Method Analysis of Unscreened Slab Lines," Progress In Electromagnetics Research Letters, Vol. 2, 29-36, 2008.
doi:10.2528/PIERL07121301
References

1. Riblet, H. J., "An approximation for the characteristic impedance of shielded-slab line," IEEE Trans. Microwave Theory Tech., Vol. 27, 557-559, 1979.
doi:10.1109/TMTT.1979.1129670

2. Levy, R., "Conformal transformations combined with numerical techniques, with applications to coupled-bar problems," IEEE Trans. Microwave Theory Tech., Vol. 28, 369-375, 1980.
doi:10.1109/TMTT.1980.1130078

3. Wei, C., R. F. Harrington, J. R. Mautz, and T. K. Sarkar, "Multiconductor transmission lines in multilayered dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 32, 439-450, 1984.
doi:10.1109/TMTT.1984.1132696

4. Stracca, G. B., G. Macchiarella, and M. Politi, "Numerical analysis of various configurations of slab lines," IEEE Trans. Microwave Theory Tech., Vol. 34, 359-363, 1986.
doi:10.1109/TMTT.1986.1133346

5. Fikioris, J. G. and J. L. Tsalamengas, "Exact solutions for rectangularly shielded lines by the Carleman-Vekua method," IEEE Trans. Microwave Theory Tech., Vol. 36, 659-675, 1988.
doi:10.1109/22.3570

6. Pan, S. G., "Characteristic impedance of a coaxial system consisting of circular and noncircular conductors," IEEE Trans. Microwave Theory Tech., Vol. 36, 917-921, 1988.
doi:10.1109/22.3612

7. Tailu, I. and R. L. Olesen, "Analysis of transmission line structures using a new image-mode Green's function," IEEE Trans. Microwave Theory Tech., Vol. 38, 782-784, 1990.
doi:10.1109/22.130975

8. Costamagna, E. and A. Fanni, "Characteristic impedance of coaxial structures of various cross section by conformal mapping," IEEE Trans. Microwave Theory Tech., Vol. 39, 1040-1043, 1991.
doi:10.1109/22.81678

9. Costamagna, E., A. Fanni, and M. Usai, "Slab line impedances revisited," IEEE Trans. Microwave Theory Tech., Vol. 41, 156-159, 1993.
doi:10.1109/22.210246

10. Abramowicz, A., "New model of coupled transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 43, 1389-1392, 1995.
doi:10.1109/22.390201

11. Zheng, Q., W. Lin, F. Xie, and J. Li, "Multipole theory analysis of various configurations of slab lines," Microwave and Optical Technology Letters, Vol. 17, 197-200, 1998.
doi:10.1002/(SICI)1098-2760(19980220)17:3<197::AID-MOP14>3.0.CO;2-2

12. Zheng, Q., F. Xie, W. Cai, and L. Liang, "Multipole theory analysis of a slab line family with offset cylindrical bars," Microwave and Optical Technology Letters, Vol. 22, 260-262, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<260::AID-MOP13>3.0.CO;2-N

13. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, 14-21, 2004.
doi:10.1002/mop.20361

14. Jiang, L. J. and W. C. Chew, "A complete variational method for capacitance extractions," Progress In Electromagnetics Research, Vol. 56, 19-32, 2006.
doi:10.2528/PIER05020402

15. Cheldavi, A. and P. Nayeri, "Circular symmetric multiconductor V-shaped transmission line," Journal of Electromagnetic Waves and Applications, Vol. 20, 461-474, 2006.
doi:10.1163/156939306776117045

16. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshild lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

17. Yildiz, C., et al. "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

18. Jiang, L. J. and W. C. Chew, "A complete variational method for capacitance extractions," Progress In Electromagnetics Research, Vol. 56, 19-32, 2006.
doi:10.2528/PIER06100401

19. Arshadi, A. and A. Cheldavi, "Simple and novel model for edged microstrip line (EMTL)," Progress In Electromagnetics Research, Vol. 65, 247-259, 2006.
doi:10.2528/PIER06093003

20. Cheldai, A. and P. Nayeri, "Analysis of V transmission lines response to external electromagnetic fields," Progress In Electromagnetics Research, Vol. 68, 297-315, 2007.
doi:10.1163/156939307779378844

21. Zheng, Q., et al. "Computation of the capacitance of the inhomogeneous insulated transmission line," Journal of Electromagnetic Waves and Applications, Vol. 21, 1565-1571, 2007.