Vol. 1
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-19
Scattering Field for the Ellipsoidal Targets Irradiated by an Electromagnetic Wave with Arbitrary Polarizing and Propagating Direction
By
Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008
Abstract
Obtaining scattering field for an ellipsoid irradiated by electromagnetic wave with arbitrary polarizing and propagating direction is a hard topic that has caused large attention in the world. Literatures relative to it are seldom found. In this paper, the scattering field for an ellipsoid is presented by utilizing the scales transformation of electromagnetic field and coordinate system rotation, as the incident wave irradiating the target with arbitrary polarizing and propagating direction. The result obtained is in good agreement with that in the reference when all the scale factors changes into 1. We take a conductor ellipsoid as an example, simulations both for ellipsoid and plant leaf are presented respectively by way of choosing the different scale factor. Results show that the scattering field is sensitively affected by polarization of the incident wave and varies not too greatly with the incident wave and changes with the observing point. At some points the scattering energy arrives to its maximum.
Citation
Ying-Le Li, Ji-Ying Huang, Ming-Jun Wang, and Jiatian Zhang, "Scattering Field for the Ellipsoidal Targets Irradiated by an Electromagnetic Wave with Arbitrary Polarizing and Propagating Direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610
References

1. Kouveliotis, N. K., S. C. Panagiotou, and C. Capsalis, "Theoretical approach of the interaction between a human head model and a mobile handset helical antenna using numerical methods," Progress In Electromagnetics Research, Vol. 65, 309-327, 2006.
doi:10.2528/PIER06101901

2. Ciarkowski, A., "Electromagetic pulse diffraction by a moving half-plane," Progress In Electromagnetics Research, Vol. 64, 53-67, 2006.
doi:10.2528/PIER06052403

3. Sihvola, A. H., "Character of surface plasmons in layered spherical structures," Progress In Electromagnetics Research, Vol. 62, 317-331, 2006.
doi:10.2528/PIER06042801

4. Sun, X., Y. Han, and H.-H. Wang, "Near-infrared light scattering by ice-water mixed clouds," Progress In Electromagnetics Research, Vol. 61, 133-142, 2006.
doi:10.2528/PIER06011401

5. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, 1569-1576, 2006.
doi:10.1163/156939306779292390

6. Hamid, A.-K., "Electromagnetic scattering from a dielectric coated conducting elliptic cylinder loading a semi-elliptic channel in a ground plane," Journal of Electromagnetic Waves and Applications, Vol. 19, 257-269, 2005.
doi:10.1163/1569393054497302

7. Huang, E. X. and A. K. Fung, "Electromagnetic wave scattering from vegetation with odd-pinnate compound leaves," Journal of Electromagnetic Waves and Applications, Vol. 19, 231-244, 2005.
doi:10.1163/1569393054497339

8. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

9. Yang, X. and S. Liu, "Brown motion diffusion model for chaff clouds," Journal of Beijing University of Aeronautics and Astronautics, Vol. 26, No. 6, 650-652, 2000.

10. Liu, J. and H. Zhao, "A study of chaff jamming to fuzes," Acta armamentaria, Vol. 22, No. 2, 182-185, 2001.

11. Ishimaru, A., Wave Propagation and Scattering in Random Medium, 27-30, Part I, Academic Press, 1978.

12. Kong, J. A., Electromagnetic Wave Theory, Publishing House of Electronics Industry, 2003.

13. Wang, Y. P. and D. Z. Cheng, Engineer Electrodynamics, Press of Xidian University, 1985.

14. Li, Y. and J. Huang, "The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction," Chinese Physics, Vol. 15, No. 2, 281-285, 2006.
doi:10.1088/1009-1963/15/2/031

15. Li, Y. and J. Huang, "The accurate solution of scattering field for a dielectric ellipsoid," Journal of Electromagnetic Waves and Application, Vol. 17, No. 12, 1745-1754, 2003.
doi:10.1163/156939303322760326

16. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

17. Li, Y. and J. Huang, "The scale-transformation of electromagnetic theory and its applications," Chinese Physics, Vol. 14, No. 4, 646-656, 2005.
doi:10.1088/1009-1963/14/4/002

18. Li, Y. and J. Huang, Scale Transformation of Electromagnetic Theory and Its Application, Press of Xidian University, 2006.

19. Wilmot, J. E., H. F. Robert, and C. P. Claud, "Spectral characteristics of radar echoes from aircraft dispensed chaff," IEEE Trans. on Aerospace and Electronic Systems, Vol. 21, No. 1, 8-20, 1985.
doi:10.1109/TAES.1985.310682

20. Kotis, A. D. and J. A. Roumeliotis, "Electromagnetic scattering by a metallic spheroid using shape pertubation method," Progress In Electromagnetics Research, Vol. 67, 113-134, 2007.
doi:10.2528/PIER06080202

21. Valagiannopoulos, C. A., "Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna," Progress In Electromagnetics Research, Vol. 71, 59-83, 2007.
doi:10.2528/PIER07021103

22. Censor, D., "Free-space relativistic low-frequency scattering by moving objects," Progress In Electromagnetics Research, Vol. 72, 195-214, 2007.
doi:10.2528/PIER07030702

23. Tong, M. S., "A stable integral equation solver for electromagnetic scattering by large scatterers with concave surface," Progress In Electromagnetics Research, Vol. 74, 113-130, 2007.
doi:10.2528/PIER07041506

24. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101