Vol. 1
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-04
Improving the Performance of an Antenna Array by Using Radar Absorbing Cover
By
Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008
Abstract
Improving the performance of a microstrip antenna array has been considered based on the innovative use of an absorbing radar cover.Since the surface wave between antennas array elements plays a major role in mutual coupling and scattering behavior of array antenna. The main objective of this work is to reduce the effect of surface wave between array elements using radar absorbing cover.The absorbing cover has been designed with spatial configuration to get maximum performance at the resonant frequency of the fabricated microstrip antenna array.The measured results of the tested antenna array show a significant reduction of both mutual coupling between array patches and radar cross section of the tested antenna array with minimum side effects on the antenna parameters.
Citation
Abdelmonem Abdelaziz, "Improving the Performance of an Antenna Array by Using Radar Absorbing Cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503
References

1. Lo, Y. T. and S. W. Lee, Antenna Handbook Theory, 1st edition, Van Nostrand Reinhold, 1988.

2. Bhattaacharyya, A. K. and L. Shafai, "Surface wave coupling between circular patch antennas," Electronic Letters, Vol. 22, 1198-1200, October 1986.
doi:10.1049/el:19860821

3. Lechtreck, L. W., "Effects of coupling accumulation in antenna arrays," IEEE Trans. Ant. Prop., Vol. AP-16, 31-37, January 1968.
doi:10.1109/TAP.1968.1139110

4. Krusevac, S., P. B. Rapa jic, and R. Kenedy, "Mutual coupling effect on thermal noise in multi-element antenna systems," PIERS Online, Vol. 2, No. 1, 2005.

5. Pozar, D. M. and D. H. Schaubert, "Scan blindness in infinite phased arrays of printed dipoles," IEEE Trans. Ant. Prop., Vol. AP-32, 602-610, June 1984.
doi:10.1109/TAP.1984.1143375

6. Dubost, G., "Influence of surface wave upon efficiency and mutual coupling between rectangular microstrip antennas," Proceeding IEEE International Symposium Digest on Ant. Prop., Vol. 2, 660663, Dallas (USA), May 1990.

7. Antilla, G. E. and N. G. Alexopoulos, "Surface wave and related effect on the RCS of microstrip dipoles printed on magneto dielectric substrates," IEEE Trans. Ant. Prop., Vol. AP-39, 1707-1715, December 1991.
doi:10.1109/8.121591

8. Steyskal, H. and J. S. Herd, "Mutual coupling compensation in small array antennas," IEEE Trans. Ant. Prop., Vol. AP-38, 1971-1975, December 1990.
doi:10.1109/8.60990

9. Mailloux, R. J., "On the use of metallized cavities in printed slot array with dielectric substrate," IEEE Trans. Ant. Prop., Vol. AP-35, 477-487, May 1987.
doi:10.1109/TAP.1987.1144146

10. Aberle, J. T., "On the use of metallized cavities backing microstrip antennas," IEEE Ant. Prop. Society Symposium, Vol. 1, 60-63, Canada, June 1991.

11. McGahan, R. V. and B. R. Rao, "Electromagnetic backscatter from microstrip arrays: theory and measurement," Phased Array Symposium Proc., RADC-TR-85-171, 23-47, 1985.

12. Jackson, D. R., "A multiple-layer radome for reducing the RCS of microstrip patch,", Vol. 2, 374-377, Dallas (USA), May 1990.

13. Chu, R. S., "Analysis of an infinite phased array of dipole elements with RAM coating on ground plane and covered with layered radome," IEEE Trans. Ant. Prop., Vol. AP-39, 164-176, February 1991.
doi:10.1109/8.68178

14. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave and Guided Wave Letters, Vol. 2, 196-198, 1991.

15. Shimada, K., K, Ishizuka, and M. Tokuda, "A study of RF absorber for anechoic chambers used in the frequency range for power line communication system," PIERS Online, Vol. 2, No. 5, 2006.
doi:10.2529/PIERS050908005522

16. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 27-40, 2006.
doi:10.1163/156939306775777323

17. Zhao, S. C., B. Z. W ang, and Q. Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002

18. Sharm, R., T. Chakra vary, S. Bho oshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

19. Wu, B., B. Li, T. Su, and C. H. Liang, "Equivalent circuit analysis and low pass filter design of split ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 1943-1953, 2006.
doi:10.1163/156939306779322765

20. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide angle absorption by the use of a meta-material plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809