Vol. 1
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-11-21
The Electrostatic Potential Associated to Interface Phonon Modes in Nitride Single Heterostructures
By
Progress In Electromagnetics Research Letters, Vol. 1, 27-33, 2008
Abstract
The electrostatic potential associated to the interface oscillation modes in nitride-based heterostructure is calculated with the use of a complete phenomenological electroelastic continuum approach for the long wave optical oscillations, and the Surface Green Function Matching technique. The crystalline symmetries of zincblende and - isotropically averaged - wurtzite are both considered in the sets of input bulk frequencies and dielectric constants.
Citation
Miguel Mora-Ramos, Rolando Perez-Alvarez, and Victor Velasco, "The Electrostatic Potential Associated to Interface Phonon Modes in Nitride Single Heterostructures," Progress In Electromagnetics Research Letters, Vol. 1, 27-33, 2008.
doi:10.2528/PIERL07111806
References

1. Lee, B. C., K. W. Kim, M. A. Stroscio, and M. Dutta, "Opticalphonon confinement and scattering in wurtzite heterostructures," Phys. Rev. B, Vol. 58, No. 8, 4860-4865, 1998.
doi:10.1103/PhysRevB.58.4860

2. Shi, J.-J, "Interface optical phonon modes and electron-interfacephonon interactions in wurtzite GaN/AlN quantum wells," Phys. Rev. B, Vol. 68, No. 16, 165335(1)-165335(11), 2003.
doi:10.1103/PhysRevB.68.165335

3. Shi, J.-J, X. L. Chu, and E. M. Goldys, "Propagating opticalphonon modes and their electron-phonon interactions in wurtzite GaN/AlxGa1-xN quantum wells," Phys. Rev. B, Vol. 70, No. 11, 115318(1)-115318(8), 2004.
doi:10.1103/PhysRevB.70.115318

4. Li, L., D. Liu, and J. J. Shi, "Electron-quasi-confined-opticalphonon interactions in wurtzite GaN/AlN quantum wells," Eur. Phys. J. B, Vol. 44, No. 4, 401-413, 2005.
doi:10.1140/epjb/e2005-00139-x

5. Mora-Ramos, M. E., J. Tutor, and V. R. Velasco, "Interfacephonon-limited two-dimensional mobility in AlGaN/GaN heterostructures," J. Appl. Phys., Vol. 100, No. 12, 123708(1)-123708(9), 2006.
doi:10.1063/1.2400508

6. Trallero-Giner, C., F. Garcia-Moliner, V. R. Velasco, and M. Cardona, "Analysis of the phenomenological models for long wavelength polar optical modes in semiconductor layered systems," Phys. Rev. B, Vol. 45, No. 20, 11944-11948, 1992.
doi:10.1103/PhysRevB.45.11944

7. Garcia-Moliner, F., "Long wave polar optical phonons in heterostructures," Phonons in Semiconductor Nanostructures: Proceedings of the NATOA dvanced Research Workshop, 1-12, J. P. Leburton, J. Pascual, and C. Sotomayor-Torres (eds.), Kluwer Academic Publishers 1993, St. Feliu De Guixols, Spain, September 1992.

8. Chubykalo, A., V. R. Velasco, and F. Garcia-Moliner, "Polar optical phonons at semiconductor interfaces," Surf. Sci., Vol. 319, No. 1–2, 184-192, 1994.
doi:10.1016/0039-6028(94)90581-9

9. Mora-Ramos, M. E. and D. A. Contreras-Solorio, "The polaron in a GaAs/AlAs quantum well," Physica B, Vol. 253, No. 3-4, 325-334, 1998.
doi:10.1016/S0921-4526(98)00292-0

10. Davydov, V. Y., Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, "Phonon dispersion and Raman scattering in hexagonal GaN and AlN," Phys. Rev. B, Vol. 58, No. 19, 12899-12907, 1998.
doi:10.1103/PhysRevB.58.12899

11. Zi, J., X. Wan, G. Wei, K. Zhang, and X. Xie, "Lattice dynamics of zinc-blende GaN and AIN: l. Bulk phonons," J. Phys.: Cond. Matt., Vol. 8, 6323-6328, 1996.
doi:10.1088/0953-8984/8/35/003

12. Bechstedt, F. and H. Grille, "Lattice dynamics of ternary alloys," Phys. Stat. Sol. (B), Vol. 216, 761-768, 1999.
doi:10.1002/(SICI)1521-3951(199911)216:1<761::AID-PSSB761>3.0.CO;2-G

13. Bechstedt, F., J. Furthmuller, and J.-M. Wagner, "Electronic and vibrational properties of group-III nitrides: Ab initio studies," Phys. Stat. Sol. (C), Vol. 0, 1732-1749, 2003.
doi:10.1002/pssc.200303131

14. Santos, A. M., E. C. F. Silva, O. C. Noriega, H. W. L. Alves, J. L. A. Alves, and J. R. Leite, "Vibrational properties of cubic AlxGa1-xN and InxGa1-xN ternary alloys," Phys. Stat. Sol. (B), Vol. 232, 182-187, 2002.
doi:10.1002/1521-3951(200207)232:1<182::AID-PSSB182>3.0.CO;2-Q

15. Bougrov, V., M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrikov, "GaN, AlN, InN, BN, SiC, SiGe," Poperties of Advanced Semiconductor Materials, M. E. Levinshtein, S. L. Rumiantsev, and M. S Shur (eds.), John Wiley, New York, 2001.

16. Palmer, D. W., http://www.semiconductors.co.uk.