Vol. 80
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-27
Handset Antenna Design: Practice and Theory
By
, Vol. 80, 123-160, 2008
Abstract
In this paper, an attempt is made to present a theory for the design of handset antennas, which results from the long experience that the authors have in the field of handset antenna design. The proposed theory is based on the well-known skin effect and constructs the antenna using a thin wire model that represent the backbone of the final antenna. The analytical solution for the thin wire model is first obtained, and the main properties (such as the return loss and the radiation properties) of the antenna can then be studied using this analytical solution. Once the antenna backbone is constructed, other elements, such as stubs, patches, etc., can be added to optimize the match at the desired frequency bands. A number of numerical and analytical examples are provided throughout the paper to validate the theory. Different antenna types, such as wire antennas and planar antennas, are tested and designed using the thin wire model. The correspondence between the analytical results and those from the numerical simulations using full-wave solvers agree very well in all examples. The authors also present in this paper a novel design of three small antennas for handset applications, which are based on the simple wire monopole, but in a three-dimensional form. The proposed three-dimensional monopole antennas have multi-band and broadband properties that cover most frequency bands being used for the handset device. The antennas feature remarkable properties while occupying a significantly small space, which makes them strong candidates for handset applications and for the future multi-antenna applications too. 1. INTRODUCTION
Citation
Geyi Wen, Qinjiang Rao, Shirook M. Ali, and Dong Wang, "Handset Antenna Design: Practice and Theory," , Vol. 80, 123-160, 2008.
doi:10.2528/PIER07111302
References

1. Yacoub, M. D., Foundations of Mobile Radio Engineering, CRC Press, 1993.

2. Lecuyer, C., Making Silicon Valley: Innovation and the Growth of High Tech., The MIT Press, Cambridge, 2005.

3. Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House, 2001.

4. Balanis, C. A., "Antenna Theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 1992.

5. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 2005.

6. Wunsch, A. D., "A closed-form expression for the driving-point impedance of the small inverted-L antenna," IEEE Trans. on Antennas and Propag., Vol. 44, No. 2, 236-242, 1996.
doi:10.1109/8.481653

7. King, R. W. P., J. C. W. Harrison, and D. H. Denton, "Transmission line missile antennas," IRE Trans. on Antennas and Propag., Vol. 8, No. 1, 88-90, 1960.
doi:10.1109/TAP.1960.1144802

8. Taga, T. and K. Tsunekawa, "Performance analysis of a built-in inverted-F antenna for 800MHz band portable radio units," IEEE Journal on Selected Areas in Comm., Vol. 5, No. 5, 921-929, 1987.
doi:10.1109/JSAC.1987.1146593

9. Nakano, H., N. Ikeda, Y.-Y. Wu, R. Sukzuki, H. Mimaki, and J. Yamauchi, "Realization of dual-frequency and wide-band VSWR performance using normal-mode helical and inverted-F antennas," IEEE Trans. on Antennas and Propag., Vol. 46, No. 6, 788-793, 1998.
doi:10.1109/8.686763

10. Tag, T., Analysis, Design, 1992.

11. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Interaction of dual band helical and PIFA handset antennas with human head and hand," Progress In Electromagnetics Research, Vol. 77, 225-242, 2007.
doi:10.2528/PIER07081804

12. Zhang, H.-T., Y.-Z. Yin, and X. Yang, "A wideband monopole with G type structure," Progress In Electromagnetics Research, Vol. 76, 229-236, 2007.
doi:10.2528/PIER07071004

13. Zhao, G., F.-S. Zhang, Y. Song, Z.-B. Weng, and Y.-C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5 Ghz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.
doi:10.2528/PIER07031405

14. Song, Y., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Multiband CPW-FED triangle-shaped monopole antenna for wireless applications," Progress In Electromagnetics Research, Vol. 70, 329-336, 2007.
doi:10.2528/PIER07020201

15. Eldek, A., "Numerical analysis of a small ultra wideband microstrip-FED tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

16. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip- FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

17. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. on Antennas and Propag., Vol. 45, No. 10, 1451-1457, 1997.
doi:10.1109/8.633849

18. Wong, K.-L. and K.-P. Yang, "Modified planar inverted-F antenna," Electronic Letters, Vol. 34, No. 1, 7-8, 1998.
doi:10.1049/el:19980102

19. Heald, M. A. and J. B. Marion, Classical Electromagnetic Radiation, 3rd edition, 1995.

20. FEKO(r) User Manual, Suite 5.3, Aug. 2006, and EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark.

21. Burke, G. J. and A. J. Poggio, "Numerical Electromagnetics Code (NEC) method of moments. Part III: User's guide," Lawrence Livermore National Laboratory, No. 1, 1981.

22. Geyi, W., Q. Rao, and M. Pecen, "Multi-band antenna apparatus disposed on a three dimensional substrate and associated methodology for a radio device," US Patent 32519.

23. Geyi, W., D. Wang, and M. Pecen, "Antenna and associated method for a multi-band radio device," US Patent 32524.

24. Geyi, W., S. M. Ali, and M. Pecen, "Multi-band antenna and associated methodology for a radio communication device," US Patent 32515.

25. Geyi, W., K. Bandurska, and P. Jarmuszewsk, "Antenna with multiple-band patch and slot structures," Patent no: US 7256741, 2007.

26. Geyi, W., P. Jarmuszewski, and A. Cooke, "Multiple-band antenna with shared slot structure," Patent no: US7239279, 2007.

27. Geyi, W., P. Jarmuszewsk, and A. Stevenson, "Multiple-band antenna with patch and slot structures," Patent no: US 7224312, 2007.

28. Geyi, W., P. Jarmuszewski, and A. Cooke, "Multiple-band antenna with shared slot structure," Patent no: US7151493, 2006.

29. Geyi, W., K. Bandurska, and P. Jarmuszewsk, "Antenna with multiple-band patch and slot structures," Patent no: US 7023387, 2006.

30. Schelkunoff, S. A., Antennas: Theory and Practice, John Wiley & Sons, 1952.

31. King, R. W. P., The Theory of Linear Antennas, Harvard University Press, 1956.

32. Geyi, W., P. Jarmuszewski, and Y. Qi, "Foster reactance theorems for antennas and radiation Q," IEEE Trans. Antennas and Propagat, Vol. AP-48, No. 3, 401-408, 2000.
doi:10.1109/8.841901

33. Geyi, W., "Calculation of element values of antenna equivalent circuit," Proc. ISAP2005, 1029-1032, 2005.

34. Geyi, W., "Physical limitations of antennas," IEEE Trans. on Antennas and Propagat., Vol. 51, 2116-2123, 2003.
doi:10.1109/TAP.2003.814754

35. Geyi, W., "A method for the evaluation of small antenna Q," IEEE Trans. Antennas and Propagat., Vol. AP-51, 2124-2129, 2003.
doi:10.1109/TAP.2003.814755

36. Geyi, W., Q. Rao, S. Ali, and M. Pecen, "Mobile wireless communications device with multiple RF transceivers using a common antenna at a same time and related methods," US patent 31351.

37. Geyi, W.Q. Rao, D. Wang, S. Ali, and M. Pecen, "Compact multi-feed multi-band antenna designs for wireless mobile devices," IEEE Antennas & Propagation Society International Symposium Proceedings, No. 6, 1036-1039, 2007.

38. Elsadek, H. and D. Nashaat, "Ultra miniaturized E-shaped dual band PIFA on cheap foam and FR4 substrates," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 291-300, 2006.
doi:10.1163/156939306775701759

39. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analysis of a 900/1800MHz dual-band gap loop antenna on a handset with proximate head and hand model," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 107-122, 2007.
doi:10.1163/156939307779391722

40. Sim, C. Y. D., "A novel dual frequency PIFA design for ease of manufacturing," J. of Electromagn. Waves and Appl., Vol. 21, No. 3, 409-419, 2007.
doi:10.1163/156939307779367413

41. Kouveliotis, N. K., S. C. Panagiotou, P. K. Varlamos, and C. Capsalis, "Theoretical approach of the interaction between a human head model and a mobile handset helical antenna using numerical methods," Progress In Electromagnetics Research, Vol. 65, 309-327, 2006.
doi:10.2528/PIER06101901

42. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901

43. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for Imt-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

44. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

45. Geyi, W., "New magnetic field integral equation for antenna system," Progress In Electromagnetics Research, Vol. 63, 153-170, 2006.
doi:10.2528/PIER06050201

46. Geyi, W., "Multi-antenna information theory," Progress In Electromagnetics Research, Vol. 75, 11-50, 2007.
doi:10.2528/PIER07052203