Vol. 1
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-11-18
Circular Fractal Monopole Antenna for Low Vswr UWB Applications
By
Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008
Abstract
A new circular ultra-wideband fractal monopole antenna based on descartes circle theorem (DCT) with elliptical iterations is presented. The proposed fractal design is optimized for return loss below -15 dB. The basic structure is slightly modified to ensure an overall smooth current distribution limited by the junction point nature of the fractal geometries. The measured return loss of the proposed design is below -15 dB within its impedance bandwidth along with omni-directional radiation pattern. Moreover due to the fractal shape, the proposed design has less weight and wind loading effect.
Citation
Salman Khan, Jun Hu, Jiang Xiong, and Sailing He, "Circular Fractal Monopole Antenna for Low Vswr UWB Applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903
References

1. Honda, S., M. Ito, H. Sek, and Y. Jingo, "A disc monopole antenna with 1:8 impedance band width and omni directional radiation pattern," Proceedings of International Symposium on Antennas Propagation, 1145-1148, Sapporo, Japan,1992.

2. Khan, S. N., X. Jiog, H. Jun, and S. He, "A modified coplanar monopole antenna of circular disk with an ultra wide bandwidth from 2.28 to 38.2 GHz," Journal of Electromagnetic Waves and Applications, Vol. 22, 593-598, 2008.
doi:10.1163/156939308784150281

3. Khan, S. N., L. Ti, H. Jun, and S. He, "A diamond like vertical monopole antenna for ultra wieband communication," Microwave and Optical Tech.L ett., Vol. 49, No. 10, 2443-2446, 2008.
doi:10.1002/mop.22745

4. Ray, K. P., G. Kumar, and P. Anob, "Wideband circular wire mesh and annular ring monopole antennas," Microwave and Optical Tech. Lett., Vol. 48, No. 12, 2459-2461, 2006.
doi:10.1002/mop.21977

5. Biswas, B. N., G. Rowdra, K. M. Rabindra, and D. R. Poddar, "Characterization of a self complementary Sierpinski gasker mixrostrip antenna," Progress In Electromagnetics Research Symposium, Vol. 2, No. 6, 698-701, 2006.

6. Huang, J. J., F. Q. Shan, and J. Z. She, "A novel multiband and broadband fractal patch antenna," Progress In Electromagnetics Research Symposium, Vol. 57–59, Cambridge, USA, March 26-29.2006.

7. Song, C. T. P., P. S. Hall, G. Shiraz, and K.Wake, "Fractal stacked monopole with very wide bandwidth," Electronics Lett., Vol. 35, No. 12, 945-946, 1999.
doi:10.1049/el:19990634

8. Biswas, B. N., G. Rowdra, K. M. Rabindra, and D. R. Poddar, "Characterization of a self complementary sierpinski gasker mixrostrip antenna," Progress In Electromagnetic Research Symposium, Vol. 2, No. 6, 698-701, 2006.

9. Arrighetti, W., P. Cupis, and G. De Gerosa, "Electromagnetic radiation from moving fractal sources: A plane wave spectral approach," Progress In Electromagnetics Research, Vol. 58, 1-19, 2006.
doi:10.2528/PIER05072001

10. Taniguchi, T. and T. Kobayashi, "An omnidirectional and low-VSWR antenna for the FCC-approved UWB frequency band," Antennas and Propagation Society International Symposium, Vol. 3, 460-463, 2003.

11. Oppermann, I., M. Hamalainen, and J. Iinatti, UWB Theory and Applications, Chapter 6, John Wiley and Sons, 2004.

12. Pattnaik, A. and R. K. Mishra, "Some observations about sierpinski fractal patch antenna," Proceedings of the XXVIIIth URSI General Assembly in New Delhi, October 2005.

13. Lagarias, J. C., C. L. Mallows, and A. Wilks, "Beyond the Descartes circle theorem," Amer.Math., Vol. 109, 338-361, 2002.
doi:10.2307/2695498

14. Liu, J. C., D. C. Chang, D. Soong, C. H. Chen, C. Y. Wu, and K. Yao, "Circular fractal antenna approaches with descartes circle theorem for multiband/wideband applications," Microwave and Optical Tech.L ett., Vol. 44, No. 5, 404-408, March 2005.
doi:10.1002/mop.20649