1. Engheta, N., "Use of fractional integration to propose some 'Fractional' solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.
2. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, 1997.
doi:10.1109/74.632994
3. Engheta, N., "Fractional paradigm in electromagnetic theory," Frontiers in Electromagnetics, 2000.
4. Samko, S. G., A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theoryand Applications, 1993.
5. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical TechnologyL etters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E
6. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801
7. Veliev, E. I. and M. V. Ivakhnychenko, "Fractional curl operator in radiation problems," Proceedings of MMET*04, 231-233, 2004.
8. Veliev, E. I. and M. V. Ivakhnychenko, "Elementary fractional dipoles," Proceedings of MMET*06, 485-487, 2006.
9. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional non-symmetric transmission line," Progress In Electromagnetic Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801
10. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9
11. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave Opt. Tech. Lett., Vol. 28, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L
12. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604
13. Veliev, E. and N. Engheta, "Fractional curl operator in reflection problems," Proceedings of MMET*04, 228-230, 2004.
14. Veliev, E. I.T. M. Ahmedov, and M. V. Ivakhnychenko, "New generalized electromagnetic boundaries — Fractional operators approach," Proceedings of MMET*06, 434-437, 2006.
15. Onufrienko, V. M., "Interaction of a plane electromagnetic wave with a metallized fractal surface," Telecommunications and Radio Engineering, Vol. 55, No. 3, 2001.
16. Engheta, N., "Fractionalization methods and their applications to radiation and scattering problems," Proceedings of MMET*00, Vol. 1, 34-40, 2000.
17. Ivakhnychenko, M. V., E. I. Veliev, and T. V. Ahmedov, "Fractional operators approach in electromagnetic wave reflection problems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1787-1802, 2007.
18. Senior, T. B. and J. L. Volakis, Approximate BoundaryConditions in Electromagnetics, The institution of Electrical Engineers, 1995.
19. Honl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, 1961.
20. Veliev, E. and N. Engheta, "Generalization of Green's theorem with fractional differintegration," 2003 IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, 2003.
21. Veliev, E. and T. M. Ahmedov, "Fractional solution of Helmholtz equation — A new presentation," Reports of NAS of Azerbaijan, No. 4, 20-27, 2005.
22. Uflyand, Y. S., "The method of dual equations in problems of mathematical physics," Nauka, 1977.
23. Veliev, E. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, 1993.
24. Veliev, E. and V. P. Shestopalov, "A general method of solving dual integral equations," Sov. Physics Dokl., Vol. 33, No. 6, 411-413, 1988.
25. Bateman, H. and A. Erdelyi, Higher Transcendental Functions, Vol. 2, 1953-1955, Vol. 2, 1953.
26. Prudnikov, H. P., Y. H. Brychkov, and O. I. Marichev, Special Functions, Vol. 2, Integrals and Series, 1986.
27. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, New York, 1972.
28. Herman, M. I. and J. L. Volakis, "High frequency scattering by a resistive strip and extensions to conductive and impedance strips," Radio Science, Vol. 22, No. 3, 335-349, 1987.
doi:10.1029/RS022i003p00335
29. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
doi:10.1163/156939301X00481
30. Balanis, C. A., Advanced Engineering Electromagnetic, Wiley, 1989.