Vol. 79
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-15
Fractional Boundary Conditions in Plane Waves Diffraction on a Strip
By
Progress In Electromagnetics Research, Vol. 79, 443-462, 2008
Abstract
New fractional boundary conditions (FBC) on plane boundaries are introduced. FBC act as intermediate case between perfect electric conductor and perfect magnetic conductor. In certain sense FBC are analogue of commonly used impedance boundary conditions with pure imaginary impedance. The relation between fractional order and impedance is shown. Plane wave diffraction problem by a strip described by FBC is formulated and solved using new method which extends known methods. Numerical results for physical characteristics are presented. Analyzing the scattering properties of the fractional strip new features are observed. FBC has one important special case where the fractional order equals to 1/2. For this special case the solution of diffraction problem can be found in analytical form for any value of wavenumber. Also for small values of wavenumber monostatic radar cross section has new specific resonances which are absent for other values of fractional order.
Citation
Eldar Veliev, Maxim Ivakhnychenko, and Turab Ahmedov, "Fractional Boundary Conditions in Plane Waves Diffraction on a Strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406
References

1. Engheta, N., "Use of fractional integration to propose some 'Fractional' solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

2. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, 1997.
doi:10.1109/74.632994

3. Engheta, N., "Fractional paradigm in electromagnetic theory," Frontiers in Electromagnetics, 2000.

4. Samko, S. G., A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theoryand Applications, 1993.

5. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical TechnologyL etters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

6. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

7. Veliev, E. I. and M. V. Ivakhnychenko, "Fractional curl operator in radiation problems," Proceedings of MMET*04, 231-233, 2004.

8. Veliev, E. I. and M. V. Ivakhnychenko, "Elementary fractional dipoles," Proceedings of MMET*06, 485-487, 2006.

9. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional non-symmetric transmission line," Progress In Electromagnetic Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801

10. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9

11. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave Opt. Tech. Lett., Vol. 28, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L

12. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

13. Veliev, E. and N. Engheta, "Fractional curl operator in reflection problems," Proceedings of MMET*04, 228-230, 2004.

14. Veliev, E. I.T. M. Ahmedov, and M. V. Ivakhnychenko, "New generalized electromagnetic boundaries — Fractional operators approach," Proceedings of MMET*06, 434-437, 2006.

15. Onufrienko, V. M., "Interaction of a plane electromagnetic wave with a metallized fractal surface," Telecommunications and Radio Engineering, Vol. 55, No. 3, 2001.

16. Engheta, N., "Fractionalization methods and their applications to radiation and scattering problems," Proceedings of MMET*00, Vol. 1, 34-40, 2000.

17. Ivakhnychenko, M. V., E. I. Veliev, and T. V. Ahmedov, "Fractional operators approach in electromagnetic wave reflection problems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1787-1802, 2007.

18. Senior, T. B. and J. L. Volakis, Approximate BoundaryConditions in Electromagnetics, The institution of Electrical Engineers, 1995.

19. Honl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, 1961.

20. Veliev, E. and N. Engheta, "Generalization of Green's theorem with fractional differintegration," 2003 IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, 2003.

21. Veliev, E. and T. M. Ahmedov, "Fractional solution of Helmholtz equation — A new presentation," Reports of NAS of Azerbaijan, No. 4, 20-27, 2005.

22. Uflyand, Y. S., "The method of dual equations in problems of mathematical physics," Nauka, 1977.

23. Veliev, E. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, 1993.

24. Veliev, E. and V. P. Shestopalov, "A general method of solving dual integral equations," Sov. Physics Dokl., Vol. 33, No. 6, 411-413, 1988.

25. Bateman, H. and A. Erdelyi, Higher Transcendental Functions, Vol. 2, 1953-1955, Vol. 2, 1953.

26. Prudnikov, H. P., Y. H. Brychkov, and O. I. Marichev, Special Functions, Vol. 2, Integrals and Series, 1986.

27. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, New York, 1972.

28. Herman, M. I. and J. L. Volakis, "High frequency scattering by a resistive strip and extensions to conductive and impedance strips," Radio Science, Vol. 22, No. 3, 335-349, 1987.
doi:10.1029/RS022i003p00335

29. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
doi:10.1163/156939301X00481

30. Balanis, C. A., Advanced Engineering Electromagnetic, Wiley, 1989.