Vol. 79
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-10-30
Raman Amplification and Superluminal Propagation of Ultrafast Pulses Based on Loop Silicon Waveguides: Theoretical Modeling and Performance
By
, Vol. 79, 291-304, 2008
Abstract
In this paper, we report, for the first time to the best of our knowledge, the detailed modeling and performance of Raman amplification and superluminal propagation of weak ultrafast femtosecond optical pulses in nonlinear loop single mode silicon-oninsulator anomalously dispersive optical waveguides. Using the device, theoretical results for 100-fs signal optical pulse show that when the launch peak power of signal pulse is fixed at −10 dBm, the gain value up to 30 dB can be achieved, and the delay time of superluminal propagation can also be adjusted by changing the system parameters, including initial chirp and peak power of pump pulse, initial delay time between pump and signal pulses, and waveguide length, etc.
Citation
Jian-Wei Wu, Feng-Guang Luo, and Qing-Tang Zhang, "Raman Amplification and Superluminal Propagation of Ultrafast Pulses Based on Loop Silicon Waveguides: Theoretical Modeling and Performance," , Vol. 79, 291-304, 2008.
doi:10.2528/PIER07101102
References

1. Yu, J., Y. Qian, P. Jeppesen, and S. N. Knudsen, "Broad-band and pulsewidth-maintained wavelength conversion based on a highnonlinearity DSF nonlinear optical loop mirror," IEEE Photon. Technol., Vol. 13, No. 4, 344-346, 2001.
doi:10.1109/68.917846

2. Shi, H., "Performance analysis on semiconductor laser amplifier loop mirrors," J. of Lightwave Technol., Vol. 20, No. 4, 682-688, 2002.
doi:10.1109/50.996589

3. Sun, H., H. Dong, and N. K. Dutta, "Mode-locked erbiumdoped fiber ring laser using intracvity polarization-maintaining loop mirror," IEEE Photon. Technol., Vol. 18, No. 12, 1311-1313, 2006.
doi:10.1109/LPT.2006.876747

4. Rong, H., A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature, Vol. 433, No. 17, 292-294, 2005.
doi:10.1038/nature03273

5. Rong, H., R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, Vol. 433, No. 20, 725-728, 2005.
doi:10.1038/nature03346

6. Liang, T. and H. Tsang, "Efficient Raman amplification in siliconon- insulator waveguide," Appl. Phys. Lett., Vol. 85, No. 16, 3343-3345, 2004.
doi:10.1063/1.1807960

7. Liu, A., H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. of Lightwave Technol., Vol. 24, No. 3, 1440-1455, 2006.
doi:10.1109/JLT.2005.863322

8. Xu, Q., V. R. Almelda, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Opt. Lett., Vol. 30, No. 1, 35-37, 2005.
doi:10.1364/OL.30.000035

9. Liu, A., H. Rong, and M. Paniccia, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express, Vol. 12, No. 8, 4261-4268, 2004.
doi:10.1364/OPEX.12.004261

10. Wu, J. W. and F. G. Luo, "Generation of high repetition rate picosecond pulse train based on ultra-small silicon waveguide," Progress In Electromagnetics Research, Vol. 75, 163-170, 2007.
doi:10.2528/PIER07060102

11. Dogariu, A., A. Kuzmich, H. Cao, and L. J. Wang, "Superluminal light pulse propagation via rephrasing in a transparent anomalously dispersive medium," Opt. Express, Vol. 8, No. 6, 344-350, 2001.
doi:10.1364/OE.8.000344

12. Lousteau, J., D. furniss, A. B. Scddon, T. M. Benson, A. Vukovic, and P. Sewell, "The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section," J. of Lightwave Technol., Vol. 22, No. 8, 1923-1929, 2006.
doi:10.1109/JLT.2004.832427

13. Leonardis, F. D. and V. M. N. Passaro, "Modeling of Raman amplification in silicon-on-insulator optical microcavities," New J. of Phys., Vol. 9, No. 25, 1-24, 2007.

14. Leonardis, F. D. and V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," J. of Lightwave Technol., Vol. 25, No. 9, 2352-2366, 2007.
doi:10.1109/JLT.2007.901443

15. Shwetanshumala, S. A. Biswas and and S. Konar, "Dynamically stable super Gaussian solitons in semiconductor doped glass fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888

16. Biswas, A., S. Konar, and E. Zerrad, "Soliton-soliton interaction with parabolic law nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833

17. Biswas, A., Shwetanshumala, and S. Konar, "Dynamically stable dispersion-managed optical solitons with parabolic law nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1249-1258, 2006.
doi:10.1163/156939306777443006

18. Dimitropoulos, D., V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express, Vol. 12, No. 1, 149-160, 2003.
doi:10.1364/OPEX.12.000149

19. Passaro, V. M. N. and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," J. of Lightwave Technol., Vol. 24, No. 7, 2920-2931, 2006.
doi:10.1109/JLT.2006.875956

20. Soref, R. A. and B. R. Bennett, "Electrooptical effects in silicon," IEEE Quantum Electron., Vol. QE-23, No. 1, 123-129, 1987.
doi:10.1109/JQE.1987.1073206

21. Claps, R., V. Rahgunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express, Vol. 12, No. 12, 2774-2780, 2004.
doi:10.1364/OPEX.12.002774

22. Dimitropoulos, D., R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-oninsulator rib waveguides," Appl. Phys. Lett., Vol. 86, No. 3, 1-3, 2005.

23. Chen, X., D. Liang, and K. Huang, "Micro wave imaging 3- D buried objects using parallel gentic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

24. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

25. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.
doi:10.2528/PIER05091201

26. Luo, S. and Z. D. Chen, "An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures," Progress In Electromagnetics Research, Vol. 68, 229-246, 2007.
doi:10.2528/PIER06090506

27. Raghunathan, V., R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. of Lightwave Technol., Vol. 23, No. 6, 2094-2101, 2005.
doi:10.1109/JLT.2005.849895

28. Hsieh, I. W., X. Chen, J. I. Dadap, N. C. Panoin, R. M. Osgood, S. J. Mcnab, and Y. A. Vlasov, "Itrafast-pulse self-phase modulation and third-order dispersion in Si photonic wirewaveguides," Opt. Express, Vol. 14, No. 25, 12380-12387, 2006.
doi:10.1364/OE.14.012380

29. Yin, L. and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett., Vol. 32, No. 4, 2031-2033, 2007.
doi:10.1364/OL.32.002031