Vol. 77
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-08-30
A Novel and Compact UWB Bandpass Filter Using Microstrip Fork-Form Resonators
By
, Vol. 77, 273-280, 2007
Abstract
A novel and compact ultra wideband (UWB) bandpass filter (BPF) with two transmission zeros near both passband edges of lower and higher frequency is proposed by using a new structure of fork-formresonators. The fork-formresonator generates a attenuation pole at the higher passband edge, lower insertion loss, wider bandwidth and compacter dimension, as compared with the traditional parallel unilateral-coupled resonator. A microstrip bandpass filter cascaded by two stages fork-formresonators with a 3-dB fractional bandwidth of 128% (from1.0 GHz to 4.6 GHz) is designed, fabricated, and tested. The measured characteristics of the filter agree with the theoretical simulations, and the measured results show good specifications which are very low insertion loss 0.5±0.3 dB within the passband and good return loss less than −15 dB from1.5 GHz to 4.0 GHz, respectively.
Citation
Hui Chen, and Yu-Xing Zhang, "A Novel and Compact UWB Bandpass Filter Using Microstrip Fork-Form Resonators," , Vol. 77, 273-280, 2007.
doi:10.2528/PIER07082302
References

1. Skolnik, M., G. Andrews, and J. P. Hansen, "Ultra wideband microwave-radar conceptual design," IEEE Trans. Aerosp. Electron. Syst., Vol. 10, 25-30, 1995.

2. Hamalainen, M., V. Hovinen, R. Tesi, J. H. J. Iinatti, and M. Latva-Aho, "On the UWB systemco existence with GSM 900, UMTS/WCDMA, and GPS," IEEE J. Sel. Area Commun., Vol. 20, 1712-1721, 2002.
doi:10.1109/JSAC.2002.805242

3. Kharakhili, F. G., M. Fardis, G. Dadashzadeh, and A. Ahmadi, "Circular slot with a novel circular microstrip open ended microstrip feed for UWB applications," Progress In Electromagnetics Research, Vol. 68, 161-167, 2007.
doi:10.2528/PIER06071901

4. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2005.859011

5. Gorur, A. and C. Karpuz, "Uniplanar compact wideband bandstop filter," IEEE Microwave Wireless Component Letter, Vol. 13, 114-116, 2003.
doi:10.1109/LMWC.2003.810114

6. Prabhu, S. and J. S. Mandeep, "Microstrip bandpass filter at S band using capacitive coupled resonator," Progress In Electromagnetics Research, Vol. 76, 223-228, 2007.
doi:10.2528/PIER07071205

7. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filter," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

8. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length spilt-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

9. Nguyen, C., "Accurate equation for determining resonator length in half-wavelength parallel-coupled bandpass filter," Electronics Letters, Vol. 29, No. 6, 532-533, 1993.
doi:10.1049/el:19930355

10. Cohn, S. B., "Parrallel coupled transmission line resonator filters," IEEE Trans. Microwave Theory Tech., Vol. MTT-6, 223-231, 1958.
doi:10.1109/TMTT.1958.1124542

11. Kajfez, D. and S. Govind, "Effect of difference in odd-and even-mode wavelengths on a parallel-coupled bandpass filter," Electronics Letters, Vol. 11, No. 5, 117-118, 1975.
doi:10.1049/el:19750088

12. Lin, C. J., C.-C. Chiu, S.-G. Hsu, and H. C. Liu, "A novel model extraction algorithmfor reconstruction of coupled transmission lines in high-speed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
doi:10.1163/156939305775537393

13. Wang, B.-Z., X.-H. Wang, and J.-S. Hong, "On the generalized transmission-line theory," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
doi:10.1163/1569393054139697

14. Matsunaga, M., M. Katayama, and K. Yasumoto, "Coupled-mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetics Research, Vol. 24, 1-17, 1999.
doi:10.2528/PIER99032902

15. Tripathi, V. K., "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, No. 9, 734-739, 1975.
doi:10.1109/TMTT.1975.1128665

16. Chen, H. and Y.-X. Zhang, "A novel compact planar six-way power divider using folded and hybrid-expanded coupled lines," Progress In Electromagnetics Research, Vol. 76, 243-252, 2007.
doi:10.2528/PIER07070601

17. Tripathi, V. K., "On the analysis of symmetrical three-line microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 25, No. 9, 726-729, 1977.
doi:10.1109/TMTT.1977.1129202

18. Tripathi, V. K.Y. K. Chin, H. S. Chang, and N. Orhanovic, "Coupled line multiports," Proc. IEEE Int. Symp. Circuits Syst., Vol. 2, No. 5, 1021-1024, 1992.

19. Kollipara, R. T., et al. "Modeling and design of interdigital structure," IEEE Trans. Electron Devices, Vol. 38, No. 11, 575-577, 1991.
doi:10.1109/16.97430

20. Zhu, Y.-Z., Y.-J. Xie, and H. Feng, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301