Vol. 77
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-01
Time Domain Analysis of Active Transmission Line Using FDTD Technique (Application to Microwave/mm - Wave Transistors)
By
, Vol. 77, 309-328, 2007
Abstract
In this paper, an accurate modeling procedure for GaAs MESFET as active coupled transmission line is presented. This model can consider the effect of wave propagation along the device electrodes. In this modeling technique the active multiconductor transmission line (AMTL) equations are obtained, which satisfy the TEM wave propagation along the GaAs MESFET electrodes. This modeling procedure is applied to a GaAs MESFETs by solving the AMTL equations using Finite-Difference Time-Domain (FDTD) technique. The scattering parameters are computed from time domain results over a frequency range of 20-220 GHz. This model investigates the effect of wave propagation along the transistor more accurate than the slice model, especially at high frequencies.
Citation
Kambiz Afrooz, Abdolali Abdipour, Ahad Tavakoli, and Masoud Movahhedi, "Time Domain Analysis of Active Transmission Line Using FDTD Technique (Application to Microwave/mm - Wave Transistors)," , Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401
References

1. Goswami, A., M. Gupta, and R. S. Gupta, "Analysis of scattering parameters and thermal noise of a MOSFET for its microwave frequency applications," Microwave Opt. Technol. Lett., Vol. 2, No. 10, 97-105, 2001.
doi:10.1002/mop.1369

2. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Trans. Microwave Theory Tech., Vol. 44, 799-808, 1996.
doi:10.1109/22.506437

3. Ghazaly, S. M. and T. Itoh, "Traveling-wave inverted-gate fieldeffect transistor: concept, analysis, and potential," IEEE Trans. Microwave Theory Tech., Vol. 37, 1027-1032, 1989.
doi:10.1109/22.25407

4. Ghazaly, S. M. and T. Itoh, "Inverted-gate field-effect transistors: novel high frequency structures," IEEE Trans. Electron Devices, Vol. 35, 810-817, 1988.
doi:10.1109/16.3330

5. Goasguen, S., M. Tomeh, and S. M. Ghazaly, "Electromagnetic and semiconductor device simulation using interpolating wavelets," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2258-2265, 2001.
doi:10.1109/22.971608

6. Hussein, Y. A. and S. M. El. Ghazaly, "Modeling and optimization of microwave devices and circuits using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 329-336, 2004.
doi:10.1109/TMTT.2003.820899

7. Movahhedi, M. and A. Abdipour, "Efficient numerical methods for simulation of high-frequency active device," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2636-2645, 2006.
doi:10.1109/TMTT.2006.872937

8. Movahhedi, M. and A. Abdipour, "Improvement of active microwave device modeling using filter-bank transforms," Proc. 35th Euro. Microwave., 1113-1117, 2005.

9. Movahhedi, M. and A. Abdipour, "Accelerating the transient simulation of semiconductor devices using filter-bank transforms," Int. J. Numer. Mod., Vol. 19, 47-67, 2006.
doi:10.1002/jnm.598

10. Abdipour, A. and A. Pacaud, "Complete sliced model of microwave FET's and Comparison with lumped model and experimental results," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 4-9, 1996.
doi:10.1109/22.481378

11. Ongareau, E., R. G. Bosisio, M. Aubourg, J. Obregon, and M. Gayral, "A non-linear and distributed modeling procedure of FETs," Int. Journal Numerical Modeling, Vol. 7, 309-319, 1994.
doi:10.1002/jnm.1660070502

12. Waliullah, M.S. M. Ghazaly, and S. Goodnick, "Large-signal circuit-based time domain analysis of high frequency devices including distributed effects," Microwave Symposium Digest, Vol. 3, 2145-2148, 2002.

13. Taflove, A., Computational Electrodynamics the Finite-Difference Time-Domain Method, Artech House, 1996.

14. Paul, C. R., "Incorporation of terminal constraints in the FDTD analysis of transmission lines," IEEE Trans. Electromagnetic Compatibility, Vol. 36, 85-91, 1994.
doi:10.1109/15.293284

15. Orlandi, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 388-399, 1996.
doi:10.1109/15.536069

16. Roden, A. J., C. R. Paul, W. T. Smith, and D. S. Gedney, "Finite- Difference, Time-Domain analysis of lossy transmission lines," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 15-24, 1996.
doi:10.1109/15.485691

17. Tang, M. and F. J. Mao, "Transient analysis of lossy nonuniform transmission lines using a time-stepin tegration method," Progress In Electromagnetic Research, Vol. 69, 257-266, 2007.
doi:10.2528/PIER06123001

18. Trakadas, P. T. and C. N. Capsalis, "Validation of a modified FDTD method on non-uniform transmission lines," Progress In Electromagnetic Research, Vol. 31, 311-329, 2001.
doi:10.2528/PIER00071705

19. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using step-by-step numerical integration," Progress In Electromagnetic Research, Vol. 58, 187-198, 2006.
doi:10.2528/PIER05072803

20. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion," Progress In Electromagnetic Research, Vol. 65, 15-26, 2006.
doi:10.2528/PIER06072701

21. Mondal, J. P., "Distributed scaling approach of MESFETs and its comparison with the lumped-element approach," IEEE Trans. Microwave Theory Tech., Vol. 37, 1085-1090, 1989.
doi:10.1109/22.24552

22. Wang, B. Z., X., H. Wang, and J. S. Hong, "On the generalized transmission-line theory," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
doi:10.1163/1569393054139697

23. Lin, C. J. and C. C. Chiu, "A novel model extraction algorithm for reconstruction of coupled transmission lines in highspeed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
doi:10.1163/156939305775537393

24. Huang, C. C., "Analysis of multiconductor transmission lines with nonlinear terminations in frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
doi:10.1163/1569393054139697