Vol. 76
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-22
FDTD/TDPO Hybrid Approach for Analysis of the EM Scattering of Combinative Objects
By
Progress In Electromagnetics Research, Vol. 76, 275-284, 2007
Abstract
A time-domain hybrid approach that combines the Finite- Difference Time-Domain (FDTD) method with Time Domain Physical Optics (TDPO) is presented. The approach can be applied to the analysis of the backscattering of combinative objects including a Small- Size structure (SS) and a Large-Size structure (LS) with respect to the wavelength of interest. When dealing with the coupling of SS to LS, the near-to-near field extrapolation technique based on Kirchhoff's surface integral representation is used and a sequential transfer method is developed. According to the time domain calculation sequence in FDTD, the contribution of SS to LS is transferred directly to far zone observation point. The sequential transfer method has some advantages in high efficiency and small amounts of computer memory. For far zone back scattering, the influence of LS onto SS can be obtained by using the reciprocity theorem. Finally, the validation and application examples are presented, demonstrating the accuracy and effectiveness of this approach.
Citation
Ling-Xia Yang, De-Biao Ge, and Bing Wei, "FDTD/TDPO Hybrid Approach for Analysis of the EM Scattering of Combinative Objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206
References

1. Nie, X.-C., Y.-B. Gan, N. Yuan, C.-F. Wang, and L.-W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," J. of Electromagn. Wave and Appl., Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215

2. Jakobus, U. and M. L Friedrich, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. on Antennas and Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378

3. Wang, Y., K. C. Sujeet, and S. N. Safieddin, "An FDTD/raytracing analysis method for wave penetration through inhomogeneous walls," IEEE Trans. On Antennas and Propagat., Vol. 50, No. 11, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157

4. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, 1995.

5. Sun, E.-Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. On Antennas and Propagat., Vol. 42, No. 1, 9-15, 1994.
doi:10.1109/8.272295

6. Le Bolzer, F., R. Gillard, J. Citerne, V. Fouad Hanna, and M. F. Wong, "An hybrid formulation combining FDTD and TDPO," 1998 IEEE Int. Antennas Propagat. Symp. Dig., Vol. 2, No. 36, 952-955, 1998.

7. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

8. Qian, Z. H., R. S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

9. Ayestar, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," J. of Electromagn. Wave and Appl., Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

10. Ferrara, F., C. Gennarelli, R, Guerriero, G. Riccio, and C. Savarese, "An efficient near-field to far-field transformation using the planar wide-mesh scanning," J. of Electromagn. Wave and Appl., Vol. 21, No. 3, 341-357, 2007.
doi:10.1163/156939307779367404

11. Ramahi, O. M., "Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 5, 753-759, 1997.
doi:10.1109/8.575616

12. Guo, L.-X., Y.-H. Wang, and Z.-S. Wu, "Application of the equivalence principle and the reciprocity theorem to electromagnetic scattering from two adjacent spherical objects," Acta Physica Sinica, Vol. 55, No. 11, 5815-5823, 2006.