Vol. 76
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-24
Complex Analysis of the Induced Currents on a Perfectly Conducting Plane Under Complex Beam Incidence
By
, Vol. 76, 299-326, 2007
Abstract
This paper is concerned with the analysis of the currents induced on a 2D infinite perfectly conducting plane illuminated by a complex beam obtained from the analytical continuation of the real location of a unit impulse source into a complex one. The main goal considering this well-known problem is to understand the meaning of the analytical continuation and the physical information underlying the complex quantities arising from it,and to investigate the capabilities of operating in complex spaces instead of the original real ones through a simple example. Several complex quantities directly related to this problem are analysed and translated into the real domain,leading to a clear and general description of all the possible behaviours of the currents. These results will provide some new insight to extend the complex analysis methodology to more complicated scattering problems. As expected,complex analysis appears to be a full-meaning tool to obtain parameterizations of EM problems,leading to more general solutions and their physical descriptions.
Citation
Maria-Jesus Gonzalez-Morales, Emilio Gago-Ribas, and Carlos Dehesa-Martinez, "Complex Analysis of the Induced Currents on a Perfectly Conducting Plane Under Complex Beam Incidence," , Vol. 76, 299-326, 2007.
doi:10.2528/PIER07071001
References

1. Deschamps, G. A., "Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, 684-685, 1971.
doi:10.1049/el:19710467

2. Felsen, L. B., "Complex rays," Philips Res. Repts. Vol. 30, Vol. '' Philips Res. Repts. 30, 187-195, 1975.

3. Ra, J. W., H. L. Bertoni, and L. B. Felsen, "Reflection and transmission of beams at a dielectric interface," SIAM J. Appl. Math., Vol. 24, No. 3, 396-413, 1973.
doi:10.1137/0124041

4. Lu, I. T., L. B. Felsen, and Y. Z. Ruan, "Sp ectral aspects of the Gaussian beam method: reflection from a homogeneous halfspace," Geophys. J. R. Astr. Soc., 915-932, 1987.

5. Dahl, M., "Electromagnetic Gaussian beams and Riemannian geometry," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.
doi:10.2528/PIER05122802

6. Kaiser, G., "Ph ysical wavelets and their sources: real physics in complex spacetime," J. Phys. A: Math. Gen., Vol. 36, 291-338, 2003.
doi:10.1088/0305-4470/36/30/201

7. Gonzalez-Morales, M. J.C. Dehesa-Martínez, and E. Gago-Ribas, "About complex extensions and their application in electromagnetics," Complex Computing-Networks. A link between Brain-like and Wave-oriented Electrodynamic Algorithms, Vol. 104, 81-86, 2006.

8. Gago-Ribas, E., M. J. Gonzalez-Morales, and C. Dehesa-Martínez, "Analytical parametrization of a 2D real propagation space in terms of complex electromagnetic beams," IEICE Trans. on Electronics, Vol. E80-C, No. 11, 1434-1439, 1997.

9. Gago-Ribas, E. and M. J. Gonzalez-Morales, "2D complex point source radiation problem. I. Complex distances and complex angles," Turkish Journal of Electric Engineering and Computer Sciences, Vol. 10, No. 2, 317-343, 2002.

10. Gonzalez-Morales, M. J. and E. Gago-Ribas, "2D complex point source radiation problem. II. Complex beams," Turkish Journal of Electric Engineering and Computer Sciences, Vol. 10, No. 2, 345-369, 2002.

11. Heyman, E. and L. B. Felsen, "Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A, Vol. 18, No. 7, 1588-1611, 2001.
doi:10.1364/JOSAA.18.001588

12. Martini, E., G. Pelosi, and S. Selleri, "Line integral representation of physical optics scattering from a perfectly conducting plate illuminated by a Gaussian beam modeled as a complex point source," IEEE Trans. on AP, Vol. 51, No. 10, 2003.

13. Lin, W., "W. and Z. Yu Existence and uniqueness of the solutions in the SN,DN and CN waveguide Theories," J. of Electromagn. Waves and Appl., Vol. 20, No. 2, 237-247, 2006.
doi:10.1163/156939306775777297

14. Imram, A. and Q. A. Naqvi, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104

15. Abo-Seida O. M. "F ar-field due to a vertical magnetic dipole in sea," J. of Electromagn. Waves and Appl., Vol. 20, No. 6, 707-715, 2006.
doi:10.1163/156939306776143406

16. Arnold M. D. "An efficient solution for scattering by a perfectly conducting strip grating," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905

17. Watanabe, K. and K. Yasumoto, "Tw o-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902

18. Hussain, W., "Asymptotic analysis of a line source diffraction by a perfectly conductiong half plane in a bi-isotropic medium," Progress In Electromagnetics Research, Vol. 58, 271-283, 2006.
doi:10.2528/PIER05091204

19. Gago-Ribas, E.M. J. Gonzalez-Morales, and C. Dehesa- Martínez, "Challenges and perspectives of complex spaces and complex signal theory analysis in electromagnetics: First steps," Electromagnetics in a Complex World: Challenges and Perspectives, Vol. 96, 175-188, 2003.

20. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Eq. (9.2.3), 1965.